使用Bright Data和Google Gemini进行结构化数据提取与挖掘
高级
这是一个Content Creation, Multimodal AI领域的自动化工作流,包含 18 个节点。主要使用 Set, Function, HttpRequest, ManualTrigger, ReadWriteFile 等节点。 利用Bright Data和Google Gemini提取并分析网络数据
前置要求
- •可能需要目标 API 的认证凭证
- •Google Gemini API Key
使用的节点 (18)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "1GOrjyc9mtZCMvCr",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "使用Bright Data和Google Gemini进行结构化数据提取和数据挖掘",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "1e9038e6-9ebc-4460-bee2-3faea3b38f4c",
"name": "当点击\"测试工作流\"时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
200,
-420
],
"parameters": {},
"typeVersion": 1
},
{
"id": "fd4ace46-7261-4380-8b65-1e00bb574f27",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
200,
-780
],
"parameters": {
"width": 400,
"height": 300,
"content": "## 注意"
},
"typeVersion": 1
},
{
"id": "1c1dd10f-beb2-4cc7-9118-77efd3172651",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
620,
-780
],
"parameters": {
"width": 480,
"height": 300,
"content": "## LLM使用情况"
},
"typeVersion": 1
},
{
"id": "9795ac80-6ded-465d-bfcf-0c6ce120452f",
"name": "Markdown到文本数据提取器",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
860,
-420
],
"parameters": {
"text": "=You need to analyze the below markdown and convert to textual data. Please do not output with your own thoughts. Make sure to output with textual data only with no links, scripts, css etc.\n\n{{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are a markdown expert"
}
]
},
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "b6a8cc64-c0c7-40dc-b7c1-0571baf3a0a9",
"name": "设置URL和Bright Data区域",
"type": "n8n-nodes-base.set",
"position": [
420,
-420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "3aedba66-f447-4d7a-93c0-8158c5e795f9",
"name": "url",
"type": "string",
"value": "https://www.bbc.com/news/world"
},
{
"id": "4e7ee31d-da89-422f-8079-2ff2d357a0ba",
"name": "zone",
"type": "string",
"value": "web_unlocker1"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "8d15dca1-3014-405f-ac35-78d64eda1d07",
"name": "为 Markdown 到文本数据提取发起 Webhook 通知",
"type": "n8n-nodes-base.httpRequest",
"position": [
1314,
-720
],
"parameters": {
"url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "content",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "fff9e2d1-f3e2-47c3-8c3a-f9de8dbdee6a",
"name": "为AI情感分析器启动Webhook通知",
"type": "n8n-nodes-base.httpRequest",
"position": [
1612,
80
],
"parameters": {
"url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "summary",
"value": "={{ $json.output }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "40c82a76-1710-4e57-8123-9c9fbc729110",
"name": "用于数据提取的 Google Gemini 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
948,
-200
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "0c1da174-9b9c-4067-9b2c-fa0cc8c33dc8",
"name": "用于情感分析器的Google Gemini聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1324,
200
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "7fae589c-854d-429e-9e67-527a002fcabf",
"name": "执行Bright Data Web请求",
"type": "n8n-nodes-base.httpRequest",
"position": [
640,
-420
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "={{ $json.zone }}"
},
{
"name": "url",
"value": "={{ $json.url }}?product=unlocker&method=api"
},
{
"name": "format",
"value": "raw"
},
{
"name": "data_format",
"value": "markdown"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "e15fb9ba-ea8f-41f0-9b99-437d14a98a7d",
"name": "带有结构化响应的主题提取器",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1236,
-20
],
"parameters": {
"text": "=Perform the topic analysis on the below content and output with the structured information.\n\nHere's the content:\n\n{{ $('Perform Bright Data Web Request').item.json.data }}",
"options": {
"systemPromptTemplate": "You are an expert data analyst."
},
"schemaType": "manual",
"inputSchema": "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"title\": \"TopicModelingResponseArray\",\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"topic\": {\n \"type\": \"string\",\n \"description\": \"The identified topic or theme derived from the input text.\"\n },\n \"score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"description\": \"Confidence score representing how strongly this topic is reflected in the content.\"\n },\n \"summary\": {\n \"type\": \"string\",\n \"description\": \"Brief explanation of the topic’s context within the text.\"\n },\n \"keywords\": {\n \"type\": \"array\",\n \"description\": \"List of keywords associated with the topic.\",\n \"items\": {\n \"type\": \"string\"\n }\n }\n },\n \"required\": [\"topic\", \"score\", \"summary\", \"keywords\"],\n \"additionalProperties\": false\n }\n}\n"
},
"typeVersion": 1
},
{
"id": "e7f2b2c5-89ba-45c4-b7a4-297a159f8b39",
"name": "带有结构化响应的按位置和类别划分的趋势",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1236,
-520
],
"parameters": {
"text": "=Perform the data analysis on the below content and output with the structured information by clustering the emerging trends by location and category\n\nHere's the content:\n\n{{ $('Perform Bright Data Web Request').item.json.data }}",
"options": {
"systemPromptTemplate": "You are an expert data analyst."
},
"schemaType": "manual",
"inputSchema": "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"title\": \"EmergingTrendsClusteredByLocationAndCategory\",\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"location\": {\n \"type\": \"string\",\n \"description\": \"Geographical region or city where the trend is observed.\"\n },\n \"category\": {\n \"type\": \"string\",\n \"description\": \"Domain or industry related to the trend (e.g., Technology, Finance, Healthcare).\"\n },\n \"trends\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"trend\": {\n \"type\": \"string\",\n \"description\": \"A concise label for the emerging trend.\"\n },\n \"score\": {\n \"type\": \"number\",\n \"minimum\": 0,\n \"maximum\": 1,\n \"description\": \"Confidence or prominence score of the trend.\"\n },\n \"summary\": {\n \"type\": \"string\",\n \"description\": \"Short explanation describing the context and impact of the trend.\"\n },\n \"mentions\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\"\n },\n \"description\": \"Keywords or phrases that commonly co-occur with the trend.\"\n }\n },\n \"required\": [\"trend\", \"score\", \"summary\", \"mentions\"],\n \"additionalProperties\": false\n }\n }\n },\n \"required\": [\"location\", \"category\", \"trends\"],\n \"additionalProperties\": false\n }\n}\n"
},
"typeVersion": 1
},
{
"id": "92203e9f-cf13-435e-bf78-3c39a6e1e6f6",
"name": "Google Gemini 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1324,
-300
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "1a252b74-6768-41a6-99dd-090e35c47065",
"name": "为按位置和类别划分的趋势启动Webhook通知",
"type": "n8n-nodes-base.httpRequest",
"position": [
1612,
-320
],
"parameters": {
"url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "summary",
"value": "={{ $json.output }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "c952ab41-66af-4b41-b04e-407816074c87",
"name": "为主题创建二进制文件",
"type": "n8n-nodes-base.function",
"position": [
1612,
-120
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
},
{
"id": "2cf80339-0927-4f48-a13a-c610eaf4edca",
"name": "将主题文件写入磁盘",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1820,
-120
],
"parameters": {
"options": {},
"fileName": "d:\\topics.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "cf1da0ee-bb78-4ea7-bb2d-f2f82f728b12",
"name": "将趋势文件写入磁盘",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1832,
-520
],
"parameters": {
"options": {},
"fileName": "d:\\trends.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "d38ca005-6ba3-4105-9fcd-058602ba16ce",
"name": "为趋势创建二进制数据",
"type": "n8n-nodes-base.function",
"position": [
1612,
-520
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "6a81579d-1f3b-4ea2-821b-fff07b32ee7d",
"connections": {
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "Trends by location and category with the structured response",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Set URL and Bright Data Zone": {
"main": [
[
{
"node": "Perform Bright Data Web Request",
"type": "main",
"index": 0
}
]
]
},
"Write the trends file to disk": {
"main": [
[]
]
},
"Create a binary data for tends": {
"main": [
[
{
"node": "Write the trends file to disk",
"type": "main",
"index": 0
}
]
]
},
"Create a binary file for topics": {
"main": [
[
{
"node": "Write the topics file to disk",
"type": "main",
"index": 0
}
]
]
},
"Perform Bright Data Web Request": {
"main": [
[
{
"node": "Markdown to Textual Data Extractor",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Set URL and Bright Data Zone",
"type": "main",
"index": 0
}
]
]
},
"Markdown to Textual Data Extractor": {
"main": [
[
{
"node": "Topic Extractor with the structured response",
"type": "main",
"index": 0
},
{
"node": "Initiate a Webhook Notification for Markdown to Textual Data Extraction",
"type": "main",
"index": 0
},
{
"node": "Trends by location and category with the structured response",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model for Data Extract": {
"ai_languageModel": [
[
{
"node": "Markdown to Textual Data Extractor",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Topic Extractor with the structured response": {
"main": [
[
{
"node": "Initiate a Webhook Notification for AI Sentiment Analyzer",
"type": "main",
"index": 0
},
{
"node": "Create a binary file for topics",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model for Sentiment Analyzer": {
"ai_languageModel": [
[
{
"node": "Topic Extractor with the structured response",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Trends by location and category with the structured response": {
"main": [
[
{
"node": "Initiate a Webhook Notification for trends by location and category",
"type": "main",
"index": 0
},
{
"node": "Create a binary data for tends",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 内容创作, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
Printify自动化 - 更新标题和描述 - AlexK1919
使用GPT-4o-mini为Printify自动生成SEO产品标题和描述
If
Set
Code
+10
26 节点Amit Mehta
内容创作
WordPress - 自动生成并发布SEO文章
使用Gemini AI和OpenAI图像在WordPress中自动生成SEO文章
Set
Telegram
Wordpress
+7
18 节点Agent Circle
内容创作
基于URL使用AI、Telegram和多平台发布自动生成社交媒体帖子
基于URL使用AI、Telegram和多平台发布自动生成社交媒体帖子
If
Set
Code
+11
42 节点Karol
内容创作
实时 - 使用Gemini和Creatomate自动化病毒式AI视频制作与发布
使用Gemini和Creatomate自动化AI视频创作与多平台发布
Set
Code
Wait
+15
47 节点Intuz
内容创作
WordPress + 社交媒体
基于GPT/Gemini和WordPress的自动化博客创建与多平台发布
If
Set
Switch
+18
44 节点Khairul Muhtadin
内容创作
LinkedIn和X病毒内容自动引擎
使用AI生成和发布自动创建LinkedIn和X的病毒内容
If
Set
Wait
+26
156 节点Diptamoy Barman
内容创作
工作流信息
难度等级
高级
节点数量18
分类2
节点类型9
作者
Amit Mehta
@amitswbaI'm a workflow automation expert with 15+ years in IT industry. I build smart, scalable n8n workflows for AI automation, marketing, CRM, and SaaS integrations. My focus is on simplifying business processes with tools like OpenAI, WhatsApp, Gmail, and Airtable. I help teams and solopreneurs automate smarter, reduce manual tasks, and grow faster—one workflow at a time.
外部链接
在 n8n.io 查看 →
分享此工作流