Automatisierung des Bewerbungsscreenings und der Bewerberbewertung von Gmail zu Airtable mit KI

Experte

Dies ist ein HR, AI Summarization-Bereich Automatisierungsworkflow mit 16 Nodes. Hauptsächlich werden Set, Merge, Airtable, GmailTrigger, ExtractFromFile und andere Nodes verwendet. Lebenslaufscreening und Bewerberbewertung mit KI von Gmail zu Airtable automatisieren

Voraussetzungen
  • Airtable API Key
  • Google-Konto + Gmail API-Anmeldedaten
  • Google Gemini API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "meta": {
    "instanceId": "689fa22e68cd4198e4ae37f3cc44f498087edd235a867e22515be823bab694c7",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "ba543316-f00d-452d-bdcb-929d264e2c30",
      "name": "Google Gemini Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        -464,
        400
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.5-flash-preview-04-17"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "oN60i7iTnOJLvzUZ",
          "name": "said latihan"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "7a05b84b-ed92-4e55-b932-390725dd9cb2",
      "name": "Google Gemini Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        464,
        400
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.5-flash-preview-04-17"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "oN60i7iTnOJLvzUZ",
          "name": "said latihan"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6cc4f324-dcfe-4e9f-8af3-34074306d37b",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        640,
        416
      ],
      "parameters": {
        "jsonSchemaExample": "{\n\t\"score\": 100,\n\t\"fit_summary\": \"Los Angeles\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "b6b4e893-d011-43d8-9453-cb27fa1a54ab",
      "name": "Auf neue Bewerbungen überwachen",
      "type": "n8n-nodes-base.gmailTrigger",
      "position": [
        -1280,
        16
      ],
      "parameters": {
        "simple": false,
        "filters": {
          "q": "has:attachment OR has:document"
        },
        "options": {
          "downloadAttachments": true,
          "dataPropertyAttachmentsPrefixName": "CV_"
        },
        "pollTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        }
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "bz2ymQsAeALCEssA",
          "name": "Ryan Google Credentials"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "57948245-8761-4b3d-9493-7ec14bdcbfcb",
      "name": "Stellenkennung extrahieren",
      "type": "n8n-nodes-base.set",
      "position": [
        -624,
        -224
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "4f8f7c3f-3f03-4b99-8332-c1131e7807b1",
              "name": "=Job Code",
              "type": "string",
              "value": "={{ ($json.subject.match(/([A-Z]{2}-\\d{3})/) || [])[1] || null }}"
            }
          ]
        },
        "includeOtherFields": true
      },
      "typeVersion": 3.4
    },
    {
      "id": "026ad70e-f96a-4547-88cb-e95d07bb8d1a",
      "name": "Stellenanzeige finden",
      "type": "n8n-nodes-base.airtable",
      "position": [
        -224,
        -224
      ],
      "parameters": {
        "base": {
          "__rl": true,
          "mode": "list",
          "value": "apppwpxrdT85fG31V",
          "cachedResultUrl": "https://airtable.com/apppwpxrdT85fG31V",
          "cachedResultName": "UMKM"
        },
        "table": {
          "__rl": true,
          "mode": "list",
          "value": "tblLM8M41XkSaTLxw",
          "cachedResultUrl": "https://airtable.com/apppwpxrdT85fG31V/tblLM8M41XkSaTLxw",
          "cachedResultName": "Job Posts"
        },
        "options": {},
        "operation": "search",
        "filterByFormula": "={Job Code} = '{{ $json[\"Job Code\"] }}'"
      },
      "credentials": {
        "airtableTokenApi": {
          "id": "FKcJ1ogNuXHNGNcb",
          "name": "Fahmi UMKM"
        }
      },
      "typeVersion": 2.1,
      "alwaysOutputData": true
    },
    {
      "id": "31e468c3-3876-4789-bed7-ef9f274d4b0d",
      "name": "Lebenslauftext (PDF) lesen",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        -688,
        272
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "CV_0"
      },
      "typeVersion": 1
    },
    {
      "id": "995b95ca-ee4d-446a-886e-2500c34830c5",
      "name": "KI-Lebenslaufparser",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        -464,
        272
      ],
      "parameters": {
        "text": "=CV Text: {{ $json.text }}\n\nEmail Subject: {{ $('Watch for New Applications').item.json.subject }}",
        "options": {
          "systemPromptTemplate": "=You are a professional CV parsing and information extraction agent, specialized in structured data extraction for job applications.\nYour task is to extract only the **relevant attributes** from the applicant's CV text. Return the extracted information in **structured JSON format**, using the keys provided below.\nIf an attribute is not found or not confidently identifiable, you may **omit** that key from the response.\n\n### Extract the following attributes (if available):\n* `job_code`: the code of the job from the Email Subject\n* `name`: Full name of the applicant\n* `email`: Email address\n* `phone`: Phone number\n* `address`: Location or city (optional)\n* `education`: Highest education or relevant qualifications\n* `experience_years`: Estimated total years of relevant work experience\n* `skills`: List of relevant skills\n* `last_position`: Most recent job title or role\n* `last_company`: Most recent company worked at\n* `language`: List of languages spoken (optional)\n* `certifications`: Relevant certificates or training (optional)\n\n### Output Rules:\n* Only include fields that are clearly present in the CV and Email Subject.\n* Format your response as a clean, valid JSON object.\n* Do not include any explanations or extra text—**only return JSON**."
        },
        "schemaType": "fromJson",
        "jsonSchemaExample": "{\n  \"job_code\": \"AB-001\",\n  \"name\": \"Siti Nurhaliza\",\n  \"email\": \"siti.nurhaliza@example.com\",\n  \"phone\": \"+62 812-3456-7890\",\n  \"address\": \"Jakarta Selatan, Indonesia\",\n  \"education\": \"Sarjana Teknik Industri, Universitas Indonesia\",\n  \"experience_years\": 3.5,\n  \"skills\": [\n    \"Meracik Kopi\",\n    \"Latte Art\",\n    \"Customer Service\",\n    \"Manajemen Waktu\"\n  ],\n  \"last_position\": \"Barista Senior\",\n  \"last_company\": \"Kopi Kita Coffeehouse\",\n  \"language\": [\n    \"Bahasa Indonesia\",\n    \"Inggris\"\n  ],\n  \"certifications\": [\n    \"Sertifikat Barista dari SCA\",\n    \"Pelatihan Latte Art Profesional\"\n  ]\n}"
      },
      "typeVersion": 1.1
    },
    {
      "id": "d36f4b59-cffc-4fa9-bb92-070630555882",
      "name": "Stellen- und Lebenslaufdaten kombinieren",
      "type": "n8n-nodes-base.merge",
      "position": [
        32,
        192
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "advanced": true,
        "mergeByFields": {
          "values": [
            {
              "field1": "Job Code",
              "field2": "output.job_code"
            }
          ]
        }
      },
      "typeVersion": 3.2
    },
    {
      "id": "17a29a4a-c659-48ba-be25-2a38de28cc58",
      "name": "KI-Bewerberbewertung",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        448,
        192
      ],
      "parameters": {
        "text": "=You are given the following job requirements and a candidate's CV data.\nPlease evaluate the match and return a score from 1 to 100, along with a brief summary of your reasoning.\n\n---\n\n Job Post Data:\n- Job Title: {{ $json['Job Title'] }}\n- Required Skills: {{ $json['Required Skills'].join(', ') }}\n- Minimum Experience: {{ $json['Minimum Experience (Years)'] }} years\n- Job Description: {{ $json['Job Description'] }}\n\n---\n Applicant CV Data:\n- Name: {{ $json.output.name }}\n- Email: {{ $json.output.email }}\n- Phone: {{ $json.output.phone }}\n- Education: {{ $json.output.education }}\n- Experience: {{ $json.output.experience_years }} years\n- Skills: {{ $json.output.skills.join(', ') }}\n- Last Position: {{ $json.output.last_position }}\n- Last Company: {{ $json.output.last_company }}\n- Language: {{ $json.output.language.join(', ') }}\n- Certifications: {{ $json.output.certifications }}",
        "batching": {},
        "messages": {
          "messageValues": [
            {
              "message": "=You are a professional job application evaluator and recruitment assistant. Your role is to assess the suitability of job applicants based on their CV data and compare it with the job's requirements. You must return a structured JSON response with the following keys:  - `score`: A number between 1–100 that reflects how well the applicant matches the job. - `fit_summary`: A short, clear explanation (max 2 sentences) of why you gave that score.  Scoring is based primarily on: - Skill match (technical and soft skills) - Relevant experience (including job titles and industries) - Education or certification (if required) - Language and communication skills (optional)  Be objective and consistent in your evaluations and use BAHASA INDONESIA. Only give high scores to applicants that strongly match the role requirements.  Do not include any extra commentary — only return JSON."
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.7
    },
    {
      "id": "ad1babe0-ccfb-4941-9b86-cf59ad6c77ca",
      "name": "Bewerber speichern",
      "type": "n8n-nodes-base.airtable",
      "position": [
        1136,
        192
      ],
      "parameters": {
        "base": {
          "__rl": true,
          "mode": "list",
          "value": "apppwpxrdT85fG31V",
          "cachedResultUrl": "https://airtable.com/apppwpxrdT85fG31V",
          "cachedResultName": "UMKM"
        },
        "table": {
          "__rl": true,
          "mode": "list",
          "value": "tblkWxuaAvw0GmeCT",
          "cachedResultUrl": "https://airtable.com/apppwpxrdT85fG31V/tblkWxuaAvw0GmeCT",
          "cachedResultName": "Applications"
        },
        "columns": {
          "value": {
            "Notes": "={{ $json.output.fit_summary }}",
            "Score": "={{ $json.output.score }}",
            "Job Post": "={{ $('Combine Job & CV Data').item.json['Job Code'] }}",
            "Email Address": "={{ $('Combine Job & CV Data').item.json.output.email }}",
            "Applicant Name": "={{ $('Combine Job & CV Data').item.json.output.name }}",
            "Years of Experience": 0
          },
          "schema": [
            {
              "id": "Application ID",
              "type": "string",
              "display": true,
              "removed": true,
              "readOnly": true,
              "required": false,
              "displayName": "Application ID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Job Post",
              "type": "array",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Job Post",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Applicant Name",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Applicant Name",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Email Address",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Email Address",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "CV File",
              "type": "array",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "CV File",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Parsed Skills",
              "type": "array",
              "display": true,
              "options": [],
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Parsed Skills",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Years of Experience",
              "type": "number",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Years of Experience",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Score",
              "type": "number",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Score",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Status",
              "type": "options",
              "display": true,
              "options": [
                {
                  "name": "Pending",
                  "value": "Pending"
                },
                {
                  "name": "Shortlisted",
                  "value": "Shortlisted"
                },
                {
                  "name": "Rejected",
                  "value": "Rejected"
                }
              ],
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Status",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Received At",
              "type": "string",
              "display": true,
              "removed": true,
              "readOnly": true,
              "required": false,
              "displayName": "Received At",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Raw Subject",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Raw Subject",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Notes",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Notes",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Auto ID",
              "type": "string",
              "display": true,
              "removed": true,
              "readOnly": true,
              "required": false,
              "displayName": "Auto ID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "create"
      },
      "credentials": {
        "airtableTokenApi": {
          "id": "FKcJ1ogNuXHNGNcb",
          "name": "Fahmi UMKM"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "25eb8342-394c-4165-9696-3d15097beae2",
      "name": "Notizzettel1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -2272,
        -1104
      ],
      "parameters": {
        "width": 656,
        "height": 1152,
        "content": "## Automate CV Screening and Applicant Scoring from Gmail to Airtable with AI\n**This workflow automates the CV screening process using AI. It monitors a Gmail inbox for incoming applications, extracts and scores CVs based on job requirements stored in Airtable, and logs structured applicant data—saving hours of manual work.**\n\n### How It Works\n1. **Trigger**\n   Watches for new emails with attachments in a Gmail label.\n2. **Extract Data**\n   * Extracts job code from the email subject (e.g., `FN-001`)\n   * Extracts raw text from the attached CV (PDF)\n3. **AI Parsing**\n   Uses Google Gemini to parse the CV and extract:\n   * Name\n   * Email\n   * Years of experience\n   * Skills\n4. **Job Lookup**\n   Uses the extracted job code to retrieve job details from Airtable.\n5. **AI Scoring**\n   * Compares applicant data with job requirements\n   * Scores from 1–100\n   * Generates a brief reasoning summary (in Bahasa Indonesia)\n6. **Log to Airtable**\n   Saves applicant data, score, and AI notes to the \"Applications\" table.\n\n### Setup Instructions\n1. **Prepare Airtable Base**\n   * **Job Posts Table**\n     * Columns: Job Code, Job Title, Required Skills, Minimum Experience, Job Description\n   * **Applications Table**\n     * Columns: Applicant Name, Email, Score, Notes\n     * Include a linked field to the Job Posts table\n2. **Add Credentials in n8n**\n   * Gmail\n   * Google AI (Gemini)\n   * Airtable\n3. **Configure Nodes**\n   * **Trigger**: Set Gmail filter (e.g., `label:job-applications`)\n   * **Extract Job Code**: Verify regex format, default is `([A-Z]{2}-\\d{3})`\n   * **Airtable Nodes**: Select your base and table in:\n     * \"Find Job Post...\"\n     * \"Save Applicant...\"\n4. **Activate Workflow**\n   * Save and enable the workflow\n   * New applications will be processed automatically\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "5782b22a-f17c-4dd3-bf59-c1929d3d70fe",
      "name": "Notizzettel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1456,
        -32
      ],
      "parameters": {
        "width": 368,
        "height": 224,
        "content": "## Watches for email with attachments"
      },
      "typeVersion": 1
    },
    {
      "id": "7a32ee3d-51b3-48a5-88f6-6b1de399f318",
      "name": "Notizzettel2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -736,
        -336
      ],
      "parameters": {
        "width": 688,
        "height": 272,
        "content": "## Fetch the Job Post In Airtable\nUses Regex to find a code like FN-001 in the email subject and use it to find the Job Post in Airtable\n\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "17e071af-7f26-4c72-a528-9fa8cc026aca",
      "name": "Notizzettel3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -768,
        176
      ],
      "parameters": {
        "width": 688,
        "height": 352,
        "content": "## Extract and Parse the CV Information\nGemini AI reads the CV text and extracts key info (name, skills, etc.) into structured JSON.\n\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "8edcc4d8-58ec-422b-b6c2-df7b883f83cc",
      "name": "Notizzettel4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        368,
        64
      ],
      "parameters": {
        "width": 448,
        "height": 496,
        "content": "## Score Applicant with AI\nCompares the CV to the job details and generates a score (1-100) and a summary.\n\n\n"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "995b95ca-ee4d-446a-886e-2500c34830c5": {
      "main": [
        [
          {
            "node": "d36f4b59-cffc-4fa9-bb92-070630555882",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "026ad70e-f96a-4547-88cb-e95d07bb8d1a": {
      "main": [
        [
          {
            "node": "d36f4b59-cffc-4fa9-bb92-070630555882",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "57948245-8761-4b3d-9493-7ec14bdcbfcb": {
      "main": [
        [
          {
            "node": "026ad70e-f96a-4547-88cb-e95d07bb8d1a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "31e468c3-3876-4789-bed7-ef9f274d4b0d": {
      "main": [
        [
          {
            "node": "995b95ca-ee4d-446a-886e-2500c34830c5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "17a29a4a-c659-48ba-be25-2a38de28cc58": {
      "main": [
        [
          {
            "node": "ad1babe0-ccfb-4941-9b86-cf59ad6c77ca",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d36f4b59-cffc-4fa9-bb92-070630555882": {
      "main": [
        [
          {
            "node": "17a29a4a-c659-48ba-be25-2a38de28cc58",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ba543316-f00d-452d-bdcb-929d264e2c30": {
      "ai_languageModel": [
        [
          {
            "node": "995b95ca-ee4d-446a-886e-2500c34830c5",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "6cc4f324-dcfe-4e9f-8af3-34074306d37b": {
      "ai_outputParser": [
        [
          {
            "node": "17a29a4a-c659-48ba-be25-2a38de28cc58",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "7a05b84b-ed92-4e55-b932-390725dd9cb2": {
      "ai_languageModel": [
        [
          {
            "node": "17a29a4a-c659-48ba-be25-2a38de28cc58",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "b6b4e893-d011-43d8-9453-cb27fa1a54ab": {
      "main": [
        [
          {
            "node": "57948245-8761-4b3d-9493-7ec14bdcbfcb",
            "type": "main",
            "index": 0
          },
          {
            "node": "31e468c3-3876-4789-bed7-ef9f274d4b0d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Personalwesen, KI-Zusammenfassung

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes16
Kategorie2
Node-Typen10
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor
Fahmi Fahreza

Fahmi Fahreza

@fahmiiireza

Backend Developer turns to AI Automation Developer

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34