Auditoría de calidad de entrevistas

Avanzado

Este es unContent Creation, Multimodal AIflujo de automatización del dominio deautomatización que contiene 23 nodos.Utiliza principalmente nodos como If, Code, Slack, GoogleSheets, ManualTrigger. Revisar comentarios de entrevistas a través de Slack y generar informes con GPT-4o-mini y Google Sheets

Requisitos previos
  • Bot Token de Slack o URL de Webhook
  • Credenciales de API de Google Sheets
  • Clave de API de OpenAI
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "DZrX6urOE53Tm4jp",
  "meta": {
    "instanceId": "8443f10082278c46aa5cf3acf8ff0f70061a2c58bce76efac814b16290845177",
    "templateCredsSetupCompleted": true
  },
  "name": "Interview Quality Audit",
  "tags": [],
  "nodes": [
    {
      "id": "9e228e13-31c4-4f40-8bc1-83ffc0c0df21",
      "name": "Al hacer clic en 'Ejecutar flujo de trabajo'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -176,
        16
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "4656de9f-4ad6-4b48-a8b0-6802cd1e88ca",
      "name": "Nota adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        576,
        160
      ],
      "parameters": {
        "height": 384,
        "content": " ✅ Validate AI Response\nType: Conditional Logic\nPurpose: Quality control checkpoint\nValidation:\n\nResponse text is not undefined\nContains valid data structure\n\nRouting:\n\n✅ Valid → Continue to JSON parsing\n❌ Invalid → Log to error sheet\n\nFunction: Prevents malformed responses from corrupting pipeline"
      },
      "typeVersion": 1
    },
    {
      "id": "ed2e275a-ea76-4d78-b9da-2149ec9f5b50",
      "name": "Nota adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        224,
        352
      ],
      "parameters": {
        "height": 320,
        "content": "🤖 AI Quality Evaluator (GPT-4o)\nType: AI Language Model\nPurpose: Cognitive engine for feedback analysis\nConfiguration:\n\nModel: gpt-4o-mini\nPlatform: Azure OpenAI\nIntegration: LangChain\n\nConnects to Azure GPT-4o-mini\nPowers NLP evaluation\nGenerates structured JSON outputs"
      },
      "typeVersion": 1
    },
    {
      "id": "97cdbdb7-5306-4910-8e93-927940ed699d",
      "name": "Nota adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        224,
        -560
      ],
      "parameters": {
        "width": 336,
        "height": 544,
        "content": "🔍 Analyze Feedback Quality\nType: LangChain LLM Chain\nPurpose: Core AI evaluation engine\nEvaluation Dimensions (1-5 Scale):\n\nSpecificity (35%) - Concrete details\nStructure/STAR (15%) - Situation-Task-Action-Result\nBias-Free Language (15%) - No gender/appearance bias\nActionability (10%) - Decision usefulness\nDepth (25%) - Multiple competencies\n\nScoring:\n\n5: Excellent - Clear STAR with evidence\n3: Adequate - Some info but vague\n1: Unusable - Purely subjective\n\nSpecial Rules:\n\nFeedback <30 words → Scores ≤2\nExtracts vague phrases (\"great guy\", \"nice energy\")\n\nOutput: JSON with scores and vague_phrases array"
      },
      "typeVersion": 1
    },
    {
      "id": "6681d513-9520-4c78-8595-cbb27bdfff9c",
      "name": "Nota adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -64,
        192
      ],
      "parameters": {
        "height": 368,
        "content": "📋 Fetch Interview Feedback\nType: Google Sheets Read\nPurpose: Retrieve raw feedback data\nConfiguration:\n\nDocument: Interviewer Brief Pack\nSheet: Raw_Feedback\nOperation: Read all rows\n\nData Retrieved:\nTimestamp, Candidate_ID, Role, Stage, Interviewer_Email, Feedback_Text, row_number\nOutput: All feedback records passed to AI evaluation"
      },
      "typeVersion": 1
    },
    {
      "id": "f3e8a974-86fa-4a81-a5bd-3cbebf6302b4",
      "name": "Nota adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        928,
        -224
      ],
      "parameters": {
        "width": 288,
        "height": 208,
        "content": "🔄 Parse AI JSON Output\nType: JavaScript Code\nPurpose: Convert string to structured data\nFunction:\n\nSafely parses AI text to JSON object\nTry-catch error handling\nThrows descriptive errors for debugging"
      },
      "typeVersion": 1
    },
    {
      "id": "78deb6fe-c12f-4281-974d-19a9155f0f0e",
      "name": "Nota adhesiva5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1664,
        448
      ],
      "parameters": {
        "width": 320,
        "height": 224,
        "content": "🎯 Check if Training Needed\nType: Conditional Logic\nPurpose: Identify low performers\nCondition: Score < 50\nRouting:\n\n✅ <50 → Send training resources\n❌ ≥50 → No additional action\n\nFunction: Triggers enhanced coaching for scores below threshold"
      },
      "typeVersion": 1
    },
    {
      "id": "97e18f0a-359c-4bf3-8ff8-bfe51a193e7d",
      "name": "Nota adhesiva6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2064,
        464
      ],
      "parameters": {
        "width": 400,
        "height": 304,
        "content": "📚 Send Training Recommendations\nType: Slack Notification\nPurpose: Deliver coaching resources\nMessage Content:\n\nScore, Flags, Specific vague phrases\nImprovement guidance (STAR method)\n📘 STAR Method Guide link\n🎥 Bias-Free Interviewing Video link\n\nFunction:\n\nDetailed coaching for scores <50\nLinks to training resources\nSupportive, growth-focused tone"
      },
      "typeVersion": 1
    },
    {
      "id": "b88c8198-7941-41a6-8b7f-406f62371288",
      "name": "Nota adhesiva7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        880,
        464
      ],
      "parameters": {
        "height": 320,
        "content": "🚨 Log AI Errors\nType: Google Sheets Append\nPurpose: Error tracking\nConfiguration:\n\nSheet: error log sheet\nOperation: APPEND\n\nFunction:\n\nCaptures AI failures\nCreates error audit trail\nEnables debugging and monitoring\nTracks system reliability\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "a98fbf8e-388a-40fe-a7a7-5e54866da422",
      "name": "Nota adhesiva9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1808,
        -144
      ],
      "parameters": {
        "width": 336,
        "height": 304,
        "content": "💬 Send Feedback Summary\nType: Slack Notification\nPurpose: Deliver quality report\nMessage Structure:\n\nRole, Stage, Score (X/100), Flags\nHigh Quality: Congratulations message\nNeeds Improvement: Vague phrases + STAR tips\n\nFunction:\n\nImmediate feedback to interviewer\nSpecific, actionable guidance\nEncourages continuous improvement"
      },
      "typeVersion": 1
    },
    {
      "id": "989baf43-960a-4393-9640-02b4454289d3",
      "name": "Nota adhesiva10",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1488,
        -592
      ],
      "parameters": {
        "width": 352,
        "height": 336,
        "content": "💾 Save Scores to Spreadsheet\nType: Google Sheets Update\nPurpose: Persist quality metrics\nConfiguration:\n\nSheet: Raw_Feedback\nOperation: UPDATE (match by row_number)\n\nFields Updated:\n\nScore (0-100)\nFlags (quality issues)\nLLM_JSON (complete AI analysis)\n\nFunction: Updates original rows, creates audit trail for trend analysis"
      },
      "typeVersion": 1
    },
    {
      "id": "c7fbcc25-cdde-4b02-b4ec-afdae31fff2e",
      "name": "Nota adhesiva11",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1152,
        160
      ],
      "parameters": {
        "width": 288,
        "height": 480,
        "content": "🧮 Calculate Weighted Quality Score\nType: JavaScript Code\nPurpose: Compute final score and flags\nWeights:\nSpecificity 35% | Depth 25% | Structure 15% | Bias-Free 15% | Actionability 10%\nFlags:\n\n\"low_detail\": specificity < 3 OR depth < 3\n\"bias\": bias_free_language < 3\n\nFunction:\n\nCalculates 0-100 score\nGenerates quality flags\nFormats vague phrases for Slack\nPreserves context (Role, Stage, row_number)\n\nOutput: Score, Flags, LLM_JSON, VaguePhrasesFormatted"
      },
      "typeVersion": 1
    },
    {
      "id": "69339a87-95fa-4827-a768-a6a9aa1def9e",
      "name": "Obtener datos brutos de comentarios",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        32,
        16
      ],
      "parameters": {
        "options": {},
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 315277036,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=315277036",
          "cachedResultName": "Raw_Feedback"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
          "cachedResultName": "Interviewer Brief Pack "
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "kpPEOLCGn963qpoh",
          "name": "automations@techdome.ai"
        }
      },
      "typeVersion": 4.6,
      "alwaysOutputData": false
    },
    {
      "id": "99814f2b-ab97-49bf-8eec-43083f731dad",
      "name": "Evaluador de Calidad con IA (GPT-4o1",
      "type": "@n8n/n8n-nodes-langchain.lmChatAzureOpenAi",
      "position": [
        272,
        192
      ],
      "parameters": {
        "model": "gpt-4o-mini",
        "options": {}
      },
      "credentials": {
        "azureOpenAiApi": {
          "id": "C3WzT18XqF8OdVM6",
          "name": "Azure Open AI account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6517c215-19c5-4644-97f6-26d650c65540",
      "name": "Analizar calidad de comentarios",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        288,
        16
      ],
      "parameters": {
        "text": "=You are an Interview Feedback Quality Auditor.\n\nYour task is to evaluate interviewer feedback notes and score them across 5 dimensions:\n- specificity (1–5)\n- structure_STAR (1–5)\n- bias_free_language (1–5)\n- actionability (1–5)\n- depth (1–5)\n\n⚖️ Scoring Guidelines:\n- 5 = Excellent: Clear, detailed, STAR format (Situation, Task, Action, Result) explicitly used or strongly implied, with evidence/examples.\n- 4 = Good: Mostly structured, some detail, minor gaps, still useful for decisions.\n- 3 = Adequate: Some relevant info but mixed with vagueness, missing STAR elements.\n- 2 = Poor: Mostly vague or generic, no clear evidence, over-reliant on subjective phrasing.\n- 1 = Unusable: Purely subjective (“great guy”, “nice energy”), no actionable details.\n\nBias-free language: Score low if feedback references gender, looks, personality, or irrelevant traits.\n\nActionability: Score higher if the feedback directly helps in making a decision (e.g., “passed all test cases under time constraint” vs “seems smart”).\n\nDepth: Score higher if multiple competencies or dimensions are covered, lower if only 1 vague point.\n\n🚨 Additional Rules:\n- If text <30 words OR contains mostly emojis/placeholders → set ALL scores ≤2 and add `\"too_short\"` to vague_phrases.\n- Extract vague phrases (e.g., “good energy”, “smart guy”, “should be fine”) into `\"vague_phrases\"` array.\n\nReturn ONLY valid JSON in this schema:\n{\n  \"specificity\": <1–5>,\n  \"structure\": <1–5>,\n  \"bias_free_language\": <1–5>,\n  \"actionability\": <1–5>,\n  \"depth\": <1–5>,\n  \"vague_phrases\": [ ... ]\n}\n",
        "batching": {},
        "messages": {
          "messageValues": [
            {
              "message": "You are an Interview Feedback Quality Auditor.   Evaluate interview feedback for specificity, structure (STAR), bias-free language, actionability, and depth.   Be strict but fair. Always return **only valid JSON** that follows the given schema.Return ONLY valid JSON, no explanations, no markdown, no quotes wrapping the whole object.\n"
            },
            {
              "type": "HumanMessagePromptTemplate",
              "message": "=Role: {{$json[\"Role\"]}}   Stage: {{$json[\"Stage\"]}}   Feedback: {{$json[\"Feedback_Text\"]}}"
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "0612aeb7-a3a2-4215-9910-4cd077e06586",
      "name": "Validar respuesta de IA",
      "type": "n8n-nodes-base.if",
      "position": [
        640,
        16
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "4901c65c-6aaf-4efe-a133-1fedfedc0bca",
              "operator": {
                "type": "string",
                "operation": "notEquals"
              },
              "leftValue": "={{ $json.text }}",
              "rightValue": "undefined "
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "f89f5698-5d3c-4771-8b0b-511b32b9fc33",
      "name": "Analizar salida JSON de IA",
      "type": "n8n-nodes-base.code",
      "position": [
        1024,
        0
      ],
      "parameters": {
        "jsCode": "// OpenAI output comes as string in $json.text\nconst raw = $json[\"text\"];\n\n// Parse safely\nlet parsed;\ntry {\n  parsed = JSON.parse(raw);\n} catch (e) {\n  throw new Error(\"Invalid JSON returned by OpenAI: \" + raw);\n}\n\nreturn parsed;\n"
      },
      "typeVersion": 2
    },
    {
      "id": "1174cddb-9bf5-4582-a7ba-aed412336b7f",
      "name": "Calcular puntuación de calidad ponderada",
      "type": "n8n-nodes-base.code",
      "position": [
        1232,
        0
      ],
      "parameters": {
        "jsCode": "// Input = parsed JSON from AI\nconst data = $json;\n\n// Weights (can be adjusted or moved to Config sheet later)\nconst weights = {\n  specificity: 0.35,\n  structure: 0.15,\n  bias_free_language: 0.15,\n  actionability: 0.10,\n  depth: 0.25,\n};\n\n// ✅ Fallback for structure (AI might send structure or structure_star)\nconst structureValue = data.structure ?? data.structure_star ?? 0;\n\n// Calculate weighted score safely\nlet total = (\n  (data.specificity * weights.specificity) +\n  (structureValue * weights.structure) +\n  (data.bias_free_language * weights.bias_free_language) +\n  (data.actionability * weights.actionability) +\n  (data.depth * weights.depth)\n) / (\n  weights.specificity +\n  weights.structure +\n  weights.bias_free_language +\n  weights.actionability +\n  weights.depth\n);\n\n// Scale to 0–100\ntotal = Math.round(total * 20);\n\n// Flags\nconst flags = [];\nif ((data.specificity ?? 0) < 3 || (data.depth ?? 0) < 3) {\n  flags.push(\"low_detail\");\n}\nif ((data.bias_free_language ?? 0) < 3) {\n  flags.push(\"bias\");\n}\n\n// Format vague phrases if they exist\nlet vagueFormatted = \"\";\nif (Array.isArray(data.vague_phrases) && data.vague_phrases.length > 0) {\n  vagueFormatted = data.vague_phrases.map(p => `• ${p}`).join(\"\\n\");\n}\n\n// Return clean JSON\nreturn {\n  json: {\n    Score: total,\n    Flags: flags.join(\", \"),\n    LLM_JSON: JSON.stringify(data),\n    VaguePhrasesFormatted: vagueFormatted,   // for Slack message\n    row_number: $json.row_number,            // keep tracking the row\n    Role: $item(0).$node[\"Fetch Raw Feedback Data\"].json.Role,\n    Stage: $item(0).$node[\"Fetch Raw Feedback Data\"].json.Stage\n  }\n};\n"
      },
      "typeVersion": 2
    },
    {
      "id": "5d940fc3-8727-4dc4-9a58-133ab5180f08",
      "name": "Guardar puntuaciones en hoja de cálculo",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1600,
        -208
      ],
      "parameters": {
        "columns": {
          "value": {
            "Flags": "={{ $json.Flags }}",
            "Score": "={{ $json.Score }}",
            "LLM_JSON": "={{ $json.LLM_JSON }}",
            "row_number": "={{ $('Fetch Raw Feedback Data').item.json.row_number }}"
          },
          "schema": [
            {
              "id": "Timestamp",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Timestamp",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Candidate_ID",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Candidate_ID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Role",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Role",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Stage",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Stage",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Interviewer_Email",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Interviewer_Email",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Feedback_Text",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Feedback_Text",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Score",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Score",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Flags",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Flags",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "LLM_JSON",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "LLM_JSON",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "row_number",
              "type": "number",
              "display": true,
              "removed": false,
              "readOnly": true,
              "required": false,
              "displayName": "row_number",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "row_number"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "update",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 315277036,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=315277036",
          "cachedResultName": "Raw_Feedback"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
          "cachedResultName": "Interviewer Brief Pack "
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "kpPEOLCGn963qpoh",
          "name": "automations@techdome.ai"
        }
      },
      "typeVersion": 4.6,
      "alwaysOutputData": true
    },
    {
      "id": "40df551b-4ca7-4268-a1fe-4ebb01fd304f",
      "name": "Enviar resumen de comentarios al entrevistador",
      "type": "n8n-nodes-base.slack",
      "position": [
        1616,
        0
      ],
      "webhookId": "ddaa7632-9e35-4bd3-82d6-572d5cae84cc",
      "parameters": {
        "text": "=:mag: *Interview Feedback Audit*\n\n*Role:* {{ $json[\"Role\"] }}\n*Stage:* {{ $json[\"Stage\"] }}\n\n:bar_chart: *Score:* {{ $json[\"Score\"] }}/100  \n:warning: *Flags:* {{ $json[\"Flags\"] || \"none\" }}\n\n{{ $json[\"VaguePhrasesFormatted\"] ? \n    (\"_We noticed vague or incomplete feedback. Examples:_\\n\" + $json[\"VaguePhrasesFormatted\"] + \n    \"\\n\\n_To improve: try being more specific and evidence-based (e.g., STAR method)._\") \n    : \n    \"_✅ Great job! Your feedback was specific, structured, and bias-free._\" \n}}\n\nKeep it up — your detailed notes help us make fairer hiring decisions 🚀\n\n_Automated with this n8n workflow_\n",
        "user": {
          "__rl": true,
          "mode": "list",
          "value": "U09HMPVD466",
          "cachedResultName": "newscctv22"
        },
        "select": "user",
        "otherOptions": {}
      },
      "credentials": {
        "slackApi": {
          "id": "rNqvWj9TfChPVRYY",
          "name": "Slack account vivek"
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "de2e5d93-df58-41ef-a22f-e7a681308a64",
      "name": "Verificar si se necesita capacitación",
      "type": "n8n-nodes-base.if",
      "position": [
        1776,
        288
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "loose"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "62f94225-d1b6-42a0-a3e9-7afceb9b937d",
              "operator": {
                "type": "number",
                "operation": "lt"
              },
              "leftValue": "={{$json[\"Score\"]}}",
              "rightValue": 50
            }
          ]
        },
        "looseTypeValidation": true
      },
      "typeVersion": 2.2
    },
    {
      "id": "49b80e52-27d3-455d-8082-e3e0f2365a69",
      "name": "Enviar recomendaciones de capacitación",
      "type": "n8n-nodes-base.slack",
      "position": [
        2064,
        272
      ],
      "webhookId": "ddaa7632-9e35-4bd3-82d6-572d5cae84cc",
      "parameters": {
        "text": "=:books: *Training Recommendation*\n\nYour interview feedback for **{{$json[\"Role\"]}} ({{$json[\"Stage\"]}})** was reviewed.\n\n📊 **Score:** {{$json[\"Score\"]}}/100  \n⚠️ **Flags:** {{$json[\"Flags\"] || \"none\"}}  \n\nWe noticed vague or incomplete feedback. Here are some examples:  \n{{  $json.VaguePhrasesFormatted }}\n\nTo improve: try using structured, evidence-based feedback (e.g., STAR method).  \n\n👉 Helpful resources:  \n📘 [STAR Method Guide](https://example.com/star-training)  \n🎥 [Bias-Free Interviewing Video](https://example.com/interview-bias)  \n\nYour detailed notes help us make fairer hiring decisions 🚀\n",
        "user": {
          "__rl": true,
          "mode": "list",
          "value": "U09HMPVD466",
          "cachedResultName": "newscctv22"
        },
        "select": "user",
        "otherOptions": {}
      },
      "credentials": {
        "slackApi": {
          "id": "rNqvWj9TfChPVRYY",
          "name": "Slack account vivek"
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "48988700-46e2-4464-87a5-99054d6e9cbc",
      "name": "Registrar errores de IA",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        944,
        304
      ],
      "parameters": {
        "columns": {
          "value": {},
          "schema": [],
          "mappingMode": "defineBelow",
          "matchingColumns": [],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 1338537721,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=1338537721",
          "cachedResultName": "error log sheet"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
          "cachedResultName": "Interviewer Brief Pack "
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "kpPEOLCGn963qpoh",
          "name": "automations@techdome.ai"
        }
      },
      "typeVersion": 4.7
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "e2d8cf56-20c5-4e9a-9d03-d8b8536128fe",
  "connections": {
    "f89f5698-5d3c-4771-8b0b-511b32b9fc33": {
      "main": [
        [
          {
            "node": "1174cddb-9bf5-4582-a7ba-aed412336b7f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0612aeb7-a3a2-4215-9910-4cd077e06586": {
      "main": [
        [
          {
            "node": "f89f5698-5d3c-4771-8b0b-511b32b9fc33",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "48988700-46e2-4464-87a5-99054d6e9cbc",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "69339a87-95fa-4827-a768-a6a9aa1def9e": {
      "main": [
        [
          {
            "node": "6517c215-19c5-4644-97f6-26d650c65540",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6517c215-19c5-4644-97f6-26d650c65540": {
      "main": [
        [
          {
            "node": "0612aeb7-a3a2-4215-9910-4cd077e06586",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "de2e5d93-df58-41ef-a22f-e7a681308a64": {
      "main": [
        [
          {
            "node": "49b80e52-27d3-455d-8082-e3e0f2365a69",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5d940fc3-8727-4dc4-9a58-133ab5180f08": {
      "main": [
        []
      ]
    },
    "99814f2b-ab97-49bf-8eec-43083f731dad": {
      "ai_languageModel": [
        [
          {
            "node": "6517c215-19c5-4644-97f6-26d650c65540",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "1174cddb-9bf5-4582-a7ba-aed412336b7f": {
      "main": [
        [
          {
            "node": "40df551b-4ca7-4268-a1fe-4ebb01fd304f",
            "type": "main",
            "index": 0
          },
          {
            "node": "5d940fc3-8727-4dc4-9a58-133ab5180f08",
            "type": "main",
            "index": 0
          },
          {
            "node": "de2e5d93-df58-41ef-a22f-e7a681308a64",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9e228e13-31c4-4f40-8bc1-83ffc0c0df21": {
      "main": [
        [
          {
            "node": "69339a87-95fa-4827-a768-a6a9aa1def9e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Creación de contenido, IA Multimodal

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos23
Categoría2
Tipos de nodos8
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Autor
Rahul Joshi

Rahul Joshi

@rahul08

Rahul Joshi is a seasoned technology leader specializing in the n8n automation tool and AI-driven workflow automation. With deep expertise in building open-source workflow automation and self-hosted automation platforms, he helps organizations eliminate manual processes through intelligent n8n ai agent automation solutions.

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34