Chatbot pour services HR et IT avec transcription audio

Avancé

Ceci est unSupport, HR, AIworkflow d'automatisation du domainecontenant 27 nœuds.Utilise principalement des nœuds comme Set, Switch, Telegram, HttpRequest, ManualTrigger, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Chatbot Ressources Humaines et Service Informatique avec transcription audio

Prérequis
  • Token Bot Telegram
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API OpenAI
  • Informations de connexion à la base de données PostgreSQL
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "zmgSshZ5xESr3ozl",
  "meta": {
    "instanceId": "1fedaf0aa3a5d200ffa1bbc98554b56cac895dd5d001907cb6f1c7a3c0a78215",
    "templateCredsSetupCompleted": true
  },
  "name": "HR & IT Helpdesk Chatbot with Audio Transcription",
  "tags": [],
  "nodes": [
    {
      "id": "c6cb921e-97ac-48f6-9d79-133993dd6ef7",
      "name": "Note autocollante",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -300,
        -280
      ],
      "parameters": {
        "color": 7,
        "width": 780,
        "height": 460,
        "content": "## 1. Download & Extract Internal Policy Documents\n[Read more about the HTTP Request Tool](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest)\n\nBegin by importing the PDF documents that contain your internal policies and FAQs—these will become the knowledge base for your Internal Helpdesk Assistant. For example, you can store a company handbook or IT/HR policy PDFs on a shared drive or cloud storage and reference a direct download link here.\n\nIn this demonstration, we'll use the **HTTP Request node** to fetch the PDF file from a given URL and then parse its text contents using the **Extract from File node**. Once extracted, these text chunks will be used to build the vector store that underpins your helpdesk chatbot’s responses.\n\n[Example Employee Handbook with Policies](https://s3.amazonaws.com/scschoolfiles/656/employee_handbook_print_1.pdf)"
      },
      "typeVersion": 1
    },
    {
      "id": "450a254c-eec3-41ea-a11d-eb87b62ee4f4",
      "name": "Lors du clic sur 'Tester le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -80,
        20
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "0972f31c-1f62-430c-8beb-bef8976cd0eb",
      "name": "HTTP Request",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        100,
        20
      ],
      "parameters": {
        "url": "https://s3.amazonaws.com/scschoolfiles/656/employee_handbook_print_1.pdf",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "bf523255-39f5-410a-beb7-6331139c5f9b",
      "name": "Extraire du fichier",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        280,
        20
      ],
      "parameters": {
        "options": {},
        "operation": "pdf"
      },
      "typeVersion": 1
    },
    {
      "id": "88901c7c-e747-44c7-87d9-e14ac99a93db",
      "name": "Note autocollante1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        540,
        -280
      ],
      "parameters": {
        "color": 7,
        "width": 780,
        "height": 1020,
        "content": "## 2. Create Internal Policy Vector Store\n[Read more about the In-Memory Vector Store](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/)\n\nVector stores power the retrieval process by matching a user's natural language questions to relevant chunks of text. We'll transform your extracted internal policy text into vector embeddings and store them in a database-like structure.\n\nWe will be using PostgreSQL which has production ready vector support.\n\n**How it works**  \n1. The text extracted in Step 1 is split into manageable segments (chunks).  \n2. An embedding model transforms these segments into numerical vectors.  \n3. These vectors, along with metadata, are stored in PostgreSQL.  \n4. When users ask a question, their query is embedded and matched to the most relevant vectors, improving the accuracy of the chatbot's response."
      },
      "typeVersion": 1
    },
    {
      "id": "8d6472ab-dcff-4d24-a320-109787bce52a",
      "name": "Créer des politiques RH",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePGVector",
      "position": [
        620,
        100
      ],
      "parameters": {
        "mode": "insert",
        "options": {}
      },
      "credentials": {
        "postgres": {
          "id": "wQK6JXyS5y1icHw3",
          "name": "Postgres account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "e669b3fb-aaf1-4df8-855b-d3142215b308",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        600,
        320
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "J2D6m1evHLUJOMhO",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "e25418af-65bb-4628-9b26-ec59cae7b2b4",
      "name": "Chargeur de données par défaut",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        760,
        340
      ],
      "parameters": {
        "options": {},
        "jsonData": "={{ $('Extract from File').item.json.text }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "a4538deb-8406-4a5b-9b1e-4e2f859943c8",
      "name": "Séparateur de texte récursif par caractère",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        860,
        560
      ],
      "parameters": {
        "options": {},
        "chunkSize": 2000
      },
      "typeVersion": 1
    },
    {
      "id": "7ee0e861-1576-4b0c-b2ef-3fc023371907",
      "name": "Telegram Trigger",
      "type": "n8n-nodes-base.telegramTrigger",
      "position": [
        1420,
        240
      ],
      "webhookId": "65f501de-3c14-4089-9b9d-8956676bebf3",
      "parameters": {
        "updates": [
          "message"
        ],
        "additionalFields": {}
      },
      "credentials": {
        "telegramApi": {
          "id": "jSdrxiRKb8yfG6Ty",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "bcf1e82e-0e83-4783-a59f-857a6d1528b6",
      "name": "Vérifier le type de message",
      "type": "n8n-nodes-base.switch",
      "position": [
        1620,
        240
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "Text",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "operator": {
                      "type": "array",
                      "operation": "contains",
                      "rightType": "any"
                    },
                    "leftValue": "={{ $json.message.keys()}}",
                    "rightValue": "text"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Audio",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "d16eb899-cccb-41b6-921e-172c525ff92c",
                    "operator": {
                      "type": "array",
                      "operation": "contains",
                      "rightType": "any"
                    },
                    "leftValue": "={{ $json.message.keys()}}",
                    "rightValue": "voice"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {
          "fallbackOutput": "extra"
        }
      },
      "typeVersion": 3.2,
      "alwaysOutputData": false
    },
    {
      "id": "d403f864-c781-48fc-a62b-de0c8bfedf06",
      "name": "OpenAI",
      "type": "@n8n/n8n-nodes-langchain.openAi",
      "position": [
        2340,
        380
      ],
      "parameters": {
        "options": {},
        "resource": "audio",
        "operation": "transcribe",
        "binaryPropertyName": "=data"
      },
      "credentials": {
        "openAiApi": {
          "id": "J2D6m1evHLUJOMhO",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.8
    },
    {
      "id": "5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd",
      "name": "Telegram1",
      "type": "n8n-nodes-base.telegram",
      "position": [
        2120,
        380
      ],
      "parameters": {
        "fileId": "={{ $json.message.voice.file_id }}",
        "resource": "file"
      },
      "credentials": {
        "telegramApi": {
          "id": "jSdrxiRKb8yfG6Ty",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "cc6862cb-acfc-465b-b142-dd5fdc12fb13",
      "name": "Type de message non pris en charge",
      "type": "n8n-nodes-base.telegram",
      "position": [
        2200,
        560
      ],
      "parameters": {
        "text": "I'm not able to process this message type.",
        "chatId": "={{ $json.message.chat.id }}",
        "additionalFields": {}
      },
      "credentials": {
        "telegramApi": {
          "id": "jSdrxiRKb8yfG6Ty",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
      "name": "Agent IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        2860,
        400
      ],
      "parameters": {
        "text": "={{ $json.text }}",
        "options": {
          "systemMessage": "You are a helpful assistant for HR and employee policies"
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "e0d5416e-a799-46a2-83e3-fa6919ec0e36",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2800,
        840
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "J2D6m1evHLUJOMhO",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "9149f41d-692e-49bc-ad70-848492d2c345",
      "name": "Mémoire de chat Postgres",
      "type": "@n8n/n8n-nodes-langchain.memoryPostgresChat",
      "position": [
        3060,
        840
      ],
      "parameters": {
        "sessionKey": "={{ $('Telegram Trigger').item.json.message.chat.id }}",
        "sessionIdType": "customKey"
      },
      "credentials": {
        "postgres": {
          "id": "wQK6JXyS5y1icHw3",
          "name": "Postgres account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
      "name": "Répondre aux questions avec un vector store",
      "type": "@n8n/n8n-nodes-langchain.toolVectorStore",
      "position": [
        3360,
        580
      ],
      "parameters": {
        "name": "hr_employee_policies",
        "description": "data for HR and employee policies"
      },
      "typeVersion": 1
    },
    {
      "id": "76220fe4-2448-4b32-92d8-68c564cc702d",
      "name": "Postgres PGVector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePGVector",
      "position": [
        3220,
        780
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "postgres": {
          "id": "wQK6JXyS5y1icHw3",
          "name": "Postgres account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "055fd294-7483-45ce-b58a-c90075199f5f",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        3640,
        780
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "J2D6m1evHLUJOMhO",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "cc13eac7-8163-45bf-8d8a-9cf72659e357",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        3300,
        920
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "J2D6m1evHLUJOMhO",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "d46e415e-75ff-46b8-b382-cdcda216b1ed",
      "name": "Telegram",
      "type": "n8n-nodes-base.telegram",
      "position": [
        4200,
        420
      ],
      "parameters": {
        "text": "={{ $json.output }}",
        "chatId": "={{ $('Telegram Trigger').first().json.message.chat.id }}",
        "additionalFields": {}
      },
      "credentials": {
        "telegramApi": {
          "id": "jSdrxiRKb8yfG6Ty",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "ddf623a1-0a5e-48c9-b897-6a339895a891",
      "name": "Modifier les champs",
      "type": "n8n-nodes-base.set",
      "position": [
        2120,
        200
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "403b336f-87ce-4bef-a5f2-1640425f8198",
              "name": "text",
              "type": "string",
              "value": "={{ $json.message.text }}"
            }
          ]
        },
        "includeOtherFields": true
      },
      "typeVersion": 3.4
    },
    {
      "id": "4ae84e17-cfc1-425c-930d-949da7308b78",
      "name": "Note autocollante2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1340,
        -280
      ],
      "parameters": {
        "color": 4,
        "width": 1300,
        "height": 1020,
        "content": "## 3. Handling Messages with Fallback Support\n\nThis workflow processes Telegram messages to handle **text** and **voice** inputs, with a fallback for unsupported message types. Here’s how it works:\n\n1. **Trigger Node**:\n   - The workflow starts with a Telegram trigger that listens for incoming messages.\n\n2. **Message Type Check**:\n   - The workflow verifies the type of message received:\n     - **Text Message**: If the message contains `$json.message.text`, it is sent directly to the agent.\n     - **Voice Message**: If the message contains `$json.message.voice`, the audio is transcribed into text using a transcription service, and the result is sent to the agent.\n\n3. **Fallback Path**:\n   - If the message is neither text nor voice, a fallback response is returned:\n     `\"Sorry, I couldn’t process your message. Please try again.\"`\n\n4. **Unified Output**:\n   - Both text messages and transcribed voice messages are converted into the same format before sending to the agent, ensuring consistency in handling.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "86ad4e08-ef2d-405e-8861-bff38e1db651",
      "name": "Note autocollante3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        220,
        220
      ],
      "parameters": {
        "width": 260,
        "height": 80,
        "content": "The setup needs to be run at the start or when data is changed"
      },
      "typeVersion": 1
    },
    {
      "id": "b05c4437-00fb-40f6-87fa-8dc564b16005",
      "name": "Note autocollante4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2680,
        -280
      ],
      "parameters": {
        "color": 4,
        "width": 1180,
        "height": 1420,
        "content": "## 4. HR & IT AI Agent Provides Helpdesk Support  \nn8n's AI agents allow you to create intelligent and interactive workflows that can access and retrieve data from internal knowledgebases. In this workflow, the AI agent is configured to provide answers for HR and IT queries by performing Retrieval-Augmented Generation (RAG) on internal documents.\n\n### How It Works:\n- **Internal Knowledgebase Access**: A **Vector store tool** is used to connect the agent to the HR & IT knowledgebase built earlier in the workflow. This enables the agent to fetch accurate and specific answers for employee queries.\n- **Chat Memory**: A **Chat memory subnode** tracks the conversation, allowing the agent to maintain context across multiple queries from the same user, creating a personalized and cohesive experience.\n- **Dynamic Query Responses**: Whether employees ask about policies, leave balances, or technical troubleshooting, the agent retrieves relevant data from the vector store and crafts a natural language response.\n\nBy integrating the AI agent with a vector store and chat memory, this workflow empowers your HR & IT helpdesk chatbot to provide quick, accurate, and conversational support to employees. \n\nPostgrSQL is used for all steps to simplify development in production."
      },
      "typeVersion": 1
    },
    {
      "id": "b266ca42-de62-4341-9aff-33ee0ac68045",
      "name": "Note autocollante5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        3900,
        300
      ],
      "parameters": {
        "color": 4,
        "width": 540,
        "height": 280,
        "content": "## 5. Send Message\n\nThe simplest and most important part :)"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "7b1d11ca-9b56-4c5f-9189-26d536c24b76",
  "connections": {
    "d403f864-c781-48fc-a62b-de0c8bfedf06": {
      "main": [
        [
          {
            "node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760": {
      "main": [
        [
          {
            "node": "d46e415e-75ff-46b8-b382-cdcda216b1ed",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd": {
      "main": [
        [
          {
            "node": "d403f864-c781-48fc-a62b-de0c8bfedf06",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ddf623a1-0a5e-48c9-b897-6a339895a891": {
      "main": [
        [
          {
            "node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0972f31c-1f62-430c-8beb-bef8976cd0eb": {
      "main": [
        [
          {
            "node": "bf523255-39f5-410a-beb7-6331139c5f9b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7ee0e861-1576-4b0c-b2ef-3fc023371907": {
      "main": [
        [
          {
            "node": "bcf1e82e-0e83-4783-a59f-857a6d1528b6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e669b3fb-aaf1-4df8-855b-d3142215b308": {
      "ai_embedding": [
        [
          {
            "node": "8d6472ab-dcff-4d24-a320-109787bce52a",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "bf523255-39f5-410a-beb7-6331139c5f9b": {
      "main": [
        [
          {
            "node": "8d6472ab-dcff-4d24-a320-109787bce52a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e0d5416e-a799-46a2-83e3-fa6919ec0e36": {
      "ai_languageModel": [
        [
          {
            "node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "cc13eac7-8163-45bf-8d8a-9cf72659e357": {
      "ai_embedding": [
        [
          {
            "node": "76220fe4-2448-4b32-92d8-68c564cc702d",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "055fd294-7483-45ce-b58a-c90075199f5f": {
      "ai_languageModel": [
        [
          {
            "node": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "e25418af-65bb-4628-9b26-ec59cae7b2b4": {
      "ai_document": [
        [
          {
            "node": "8d6472ab-dcff-4d24-a320-109787bce52a",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "bcf1e82e-0e83-4783-a59f-857a6d1528b6": {
      "main": [
        [
          {
            "node": "ddf623a1-0a5e-48c9-b897-6a339895a891",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "cc6862cb-acfc-465b-b142-dd5fdc12fb13",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9149f41d-692e-49bc-ad70-848492d2c345": {
      "ai_memory": [
        [
          {
            "node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "76220fe4-2448-4b32-92d8-68c564cc702d": {
      "ai_vectorStore": [
        [
          {
            "node": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "a4538deb-8406-4a5b-9b1e-4e2f859943c8": {
      "ai_textSplitter": [
        [
          {
            "node": "e25418af-65bb-4628-9b26-ec59cae7b2b4",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "450a254c-eec3-41ea-a11d-eb87b62ee4f4": {
      "main": [
        [
          {
            "node": "0972f31c-1f62-430c-8beb-bef8976cd0eb",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a1f68887-da44-4bff-86fc-f607a5bd0ab6": {
      "ai_tool": [
        [
          {
            "node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Support, Ressources Humaines, Intelligence Artificielle

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds27
Catégorie3
Types de nœuds17
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34