Enrichissement automatique des alertes SIEM avec MITRE ATT&CK, Qdrant et Zendesk dans n8n

Avancé

Ceci est unAI, SecOpsworkflow d'automatisation du domainecontenant 26 nœuds.Utilise principalement des nœuds comme Zendesk, SplitOut, GoogleDrive, ManualTrigger, SplitInBatches, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Automatiser l'enrichissement des alertes SIEM avec MITRE ATT&CK, Qdrant et Zendesk dans n8n

Prérequis
  • Informations d'identification Google Drive API
  • Clé API OpenAI
  • Informations de connexion au serveur Qdrant
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "cb484ba7b742928a2048bf8829668bed5b5ad9787579adea888f05980292a4a7",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "86ddd018-3d6b-46b9-aa93-dedd6c6b5076",
      "name": "When chat message received",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -880,
        360
      ],
      "webhookId": "a9668bb8-bbe8-418a-b5c9-ff7dd431244f",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "a5ba5090-8e3b-4408-82df-92d2c524039e",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -680,
        360
      ],
      "parameters": {
        "options": {
          "systemMessage": "You are a cybersecurity expert trained on MITRE ATT&CK and enterprise incident response. Your job is to:\n1. Extract TTP information from SIEM data.\n2. Provide actionable remediation steps tailored to the alert.\n3. Cross-reference historical patterns and related alerts.\n4. Recommend external resources for deeper understanding.\n\nEnsure that:\n- TTPs are tagged with the tactic, technique name, and technique ID.\n- Remediation steps are specific and actionable.\n- Historical data includes related alerts and notable trends.\n- External links are relevant to the observed behavior.\n"
        }
      },
      "typeVersion": 1.7
    },
    {
      "id": "67c52944-b616-4ea6-9507-e9fb6fcdbe2b",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -740,
        580
      ],
      "parameters": {
        "model": "gpt-4o",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733",
      "name": "Split Out",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        -720,
        1220
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "data"
      },
      "typeVersion": 1
    },
    {
      "id": "46a5b8c6-3d34-4e9b-b812-23135f28c278",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -580,
        1420
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "561b0737-26d5-450d-bd9e-08e0a608d6f9",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        -460,
        1440
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "id",
                "value": "={{ $json.id }}"
              },
              {
                "name": "name",
                "value": "={{ $json.name }}"
              },
              {
                "name": "killchain",
                "value": "={{ $json.kill_chain_phases }}"
              },
              {
                "name": "external",
                "value": "={{ $json.external_references }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.description }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "6e8a4aed-7e8c-492a-b816-6ab1a98c312a",
      "name": "Token Splitter1",
      "type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
      "position": [
        -460,
        1620
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "0c54049e-b5e8-448f-b864-39aeb274de3e",
      "name": "Window Buffer Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        -580,
        580
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "96b776a0-10da-4f70-99d0-ad6b6ee8fcca",
      "name": "Embeddings OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -460,
        720
      ],
      "parameters": {
        "model": "text-embedding-3-large",
        "options": {
          "dimensions": 1536
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "695fba89-8f42-47c3-9d86-73f4ea0e72df",
      "name": "Extract from File",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        -920,
        1220
      ],
      "parameters": {
        "options": {},
        "operation": "fromJson"
      },
      "typeVersion": 1
    },
    {
      "id": "0b9897b0-149b-43ce-b66c-e78552729aa5",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1360,
        1220
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "d8c29a14-0389-4748-a9de-686bf9a682c5",
      "name": "AI Agent1",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -540,
        -440
      ],
      "parameters": {
        "text": "=Siem Alert Data:\nAlert: {{ $json.raw_subject }}\nDescription: {{ $json.description }}",
        "options": {
          "systemMessage": "You are a cybersecurity expert trained on MITRE ATT&CK and enterprise incident response. Your job is to:\n1. Extract TTP information from SIEM data.\n2. Provide actionable remediation steps tailored to the alert.\n3. Cross-reference historical patterns and related alerts.\n4. Recommend external resources for deeper understanding.\n\nEnsure that:\n- TTPs are tagged with the tactic, technique name, and technique ID.\n- Remediation steps are specific and actionable.\n- Historical data includes related alerts and notable trends.\n- External links are relevant to the observed behavior.\n\nPlease output your response in html format, but do not include ```html at the beginning \n"
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.7
    },
    {
      "id": "55d0b00a-5046-45fa-87cb-cb0257caae87",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -600,
        -220
      ],
      "parameters": {
        "model": "gpt-4o",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "9b53566b-e021-403d-9d78-28504c5c1dfa",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -320,
        -40
      ],
      "parameters": {
        "model": "text-embedding-3-large",
        "options": {
          "dimensions": 1536
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "f3b44ef5-e928-4662-81ef-4dd044829607",
      "name": "Loop Over Items",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        -940,
        -440
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "cc572b71-65c9-460c-bdcd-1d20feb15b32",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        940
      ],
      "parameters": {
        "color": 7,
        "width": 1380,
        "height": 820,
        "content": "![n8n](https://uploads.n8n.io/templates/qdrantlogo.png)\n## Embed your Vector Store\nTo provide data for your Vector store, you need to pass it in as JSON, and ensure it's setup correctly. This flow pulls the JSON file from Google Drive and extracts the JSON data and then passes it into the qdrant collection. "
      },
      "typeVersion": 1
    },
    {
      "id": "d5052d52-bec2-4b70-b460-6d5789c28d2c",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        220
      ],
      "parameters": {
        "color": 7,
        "width": 1380,
        "height": 680,
        "content": "![n8n](https://uploads.n8n.io/templates/n8n.png)\n## Talk to your Vector Store\nNow that your vector store has been updated with the embedded data, \nyou can use the n8n chat interface to talk to your data using OpenAI, \nOllama, or any of our supported LLMs."
      },
      "typeVersion": 1
    },
    {
      "id": "5cb478f6-17f3-4d7a-9b66-9e0654bd1dc9",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        -700
      ],
      "parameters": {
        "color": 7,
        "width": 2140,
        "height": 900,
        "content": "![Servicenow](https://uploads.n8n.io/templates/zendesk.png)\n## Deploy your Vector Store\nThis flow adds contextual information to your tickets using the Mitre Attack framework to help contextualize the ticket data."
      },
      "typeVersion": 1
    },
    {
      "id": "71ee28f5-84a2-4c6c-855a-6c7c09b2d62a",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        0,
        -160
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"ttp_identification\": {\n    \"alert_summary\": \"The alert indicates a check-in from the NetSupport RAT, a known Remote Access Trojan, suggesting command and control (C2) communication.\",\n    \"mitre_attack_ttps\": [\n      {\n        \"tactic\": \"Command and Control\",\n        \"technique\": \"Protocol or Service Impersonation\",\n        \"technique_id\": \"T1001.003\",\n        \"description\": \"The RAT's check-in over port 443 implies potential masquerading of its traffic as legitimate SSL/TLS traffic, a tactic often used to blend C2 communications with normal web traffic.\",\n        \"reference\": \"https://attack.mitre.org/techniques/T1001/003/\"\n      }\n    ]\n  },\n  \"remediation_steps\": {\n    \"network_segmentation\": {\n      \"action\": \"Isolate the affected host\",\n      \"target\": \"10.11.26.183\",\n      \"reason\": \"Prevents further C2 communication or lateral movement.\"\n    },\n    \"endpoint_inspection\": {\n      \"action\": \"Perform a thorough inspection\",\n      \"target\": \"Impacted endpoint\",\n      \"method\": \"Use endpoint detection and response (EDR) tools to check for additional persistence mechanisms.\"\n    },\n    \"network_traffic_analysis\": {\n      \"action\": \"Investigate and block unusual traffic\",\n      \"target\": \"IP 194.180.191.64\",\n      \"method\": \"Implement blocks for the IP across the firewall or IDS/IPS systems.\"\n    },\n    \"system_patching\": {\n      \"action\": \"Ensure all systems are updated\",\n      \"method\": \"Apply the latest security patches to mitigate vulnerabilities exploited by RAT malware.\"\n    },\n    \"ioc_hunting\": {\n      \"action\": \"Search for Indicators of Compromise (IoCs)\",\n      \"method\": \"Check for NetSupport RAT IoCs across other endpoints within the network.\"\n    }\n  },\n  \"historical_patterns\": {\n    \"network_anomalies\": \"Past alerts involving similar attempts to use standard web ports (e.g., 80, 443) for non-standard applications could suggest a broader attempt to blend malicious traffic into legitimate streams.\",\n    \"persistence_tactics\": \"Any detection of anomalies in task scheduling or shortcut modifications may indicate persistence methods similar to those used by RATs.\"\n  },\n  \"external_resources\": [\n    {\n      \"title\": \"ESET Report on Okrum and Ketrican\",\n      \"description\": \"Discusses similar tactics involving protocol impersonation and C2.\",\n      \"url\": \"https://www.eset.com/int/about/newsroom/research/okrum-ketrican/\"\n    },\n    {\n      \"title\": \"Malleable C2 Profiles\",\n      \"description\": \"Document on crafting custom C2 traffic profiles similar to the targeting methods used by NetSupport RAT.\",\n      \"url\": \"https://www.cobaltstrike.com/help-malleable-c2\"\n    },\n    {\n      \"title\": \"MITRE ATT&CK Technique Overview\",\n      \"description\": \"Overview of Protocol or Service Impersonation tactics.\",\n      \"url\": \"https://attack.mitre.org/techniques/T1001/003/\"\n    }\n  ]\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "3aeb973d-22e5-4eaf-8fe8-fae3447909e1",
      "name": "Pull Mitre Data From Gdrive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -1140,
        1220
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "list",
          "value": "1oWBLO5AlIqbgo9mKD1hNtx92HdC6O28d",
          "cachedResultUrl": "https://drive.google.com/file/d/1oWBLO5AlIqbgo9mKD1hNtx92HdC6O28d/view?usp=drivesdk",
          "cachedResultName": "cleaned_mitre_attack_data.json"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "AVa7MXBLiB9NYjuO",
          "name": "Angel Gdrive"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "3b35633c-de80-4062-8497-cb65092d5708",
      "name": "Embed JSON in Qdrant Collection",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -520,
        1220
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5f7f2fd8-276f-4b3a-ae88-1f1765967883",
      "name": "Query Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -480,
        580
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "options": {},
        "toolName": "mitre_attack_vector_store",
        "toolDescription": "The mitre_attack_vector_store is a knowledge base trained on the MITRE ATT&CK framework. It is designed to help identify, correlate, and provide context for cybersecurity incidents based on textual descriptions of alerts, events, or behaviors. This tool leverages precomputed embeddings of attack techniques, tactics, and procedures (TTPs) to map user queries (such as SIEM-generated alerts or JIRA ticket titles) to relevant MITRE ATT&CK techniques.\n\nBy analyzing input text, the vector store can:\n\nRetrieve the most relevant MITRE ATT&CK entries (e.g., techniques, tactics, descriptions, external references).\nProvide structured context about potential adversary behaviors.\nSuggest remediation actions or detection methods based on the input.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "mitre",
          "cachedResultName": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "298ffc29-1d60-4c05-92c6-a61071629a3f",
      "name": "Qdrant Vector Store query",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -320,
        -200
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "options": {},
        "toolName": "mitre_attack_vector_store",
        "toolDescription": "The mitre_attack_vector_store is a knowledge base trained on the MITRE ATT&CK framework. It is designed to help identify, correlate, and provide context for cybersecurity incidents based on textual descriptions of alerts, events, or behaviors. This tool leverages precomputed embeddings of attack techniques, tactics, and procedures (TTPs) to map user queries (such as SIEM-generated alerts or JIRA ticket titles) to relevant MITRE ATT&CK techniques.\n\nBy analyzing input text, the vector store can:\n\nRetrieve the most relevant MITRE ATT&CK entries (e.g., techniques, tactics, descriptions, external references).\nProvide structured context about potential adversary behaviors.\nSuggest remediation actions or detection methods based on the input.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "mitre",
          "cachedResultName": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c47f0ae6-106d-46da-afc3-f7afb86923ff",
      "name": "Get all Zendesk Tickets",
      "type": "n8n-nodes-base.zendesk",
      "position": [
        -1180,
        -440
      ],
      "parameters": {
        "options": {},
        "operation": "getAll"
      },
      "credentials": {
        "zendeskApi": {
          "id": "ROx0ipJapRomRxEX",
          "name": "Zendesk Demo Access"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0ec2c505-5721-41af-91c8-1b0b55826d9e",
      "name": "Update Zendesk with Mitre Data",
      "type": "n8n-nodes-base.zendesk",
      "position": [
        0,
        -360
      ],
      "parameters": {
        "id": "={{ $('Loop Over Items').item.json.id }}",
        "operation": "update",
        "updateFields": {
          "internalNote": "=Summary: {{ $json.output.ttp_identification.alert_summary }}\n\n",
          "customFieldsUi": {
            "customFieldsValues": [
              {
                "id": 34479547176212,
                "value": "={{ $json.output.ttp_identification.mitre_attack_ttps[0].technique_id }}"
              },
              {
                "id": 34479570659732,
                "value": "={{ $json.output.ttp_identification.mitre_attack_ttps[0].tactic }}"
              }
            ]
          }
        }
      },
      "credentials": {
        "zendeskApi": {
          "id": "ROx0ipJapRomRxEX",
          "name": "Zendesk Demo Access"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8",
      "name": "Move on to next ticket",
      "type": "n8n-nodes-base.noOp",
      "position": [
        360,
        -80
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "a5ba5090-8e3b-4408-82df-92d2c524039e": {
      "main": [
        []
      ]
    },
    "d8c29a14-0389-4748-a9de-686bf9a682c5": {
      "main": [
        [
          {
            "node": "0ec2c505-5721-41af-91c8-1b0b55826d9e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733": {
      "main": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3b44ef5-e928-4662-81ef-4dd044829607": {
      "main": [
        [],
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6e8a4aed-7e8c-492a-b816-6ab1a98c312a": {
      "ai_textSplitter": [
        [
          {
            "node": "561b0737-26d5-450d-bd9e-08e0a608d6f9",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "9b53566b-e021-403d-9d78-28504c5c1dfa": {
      "ai_embedding": [
        [
          {
            "node": "298ffc29-1d60-4c05-92c6-a61071629a3f",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "695fba89-8f42-47c3-9d86-73f4ea0e72df": {
      "main": [
        [
          {
            "node": "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "67c52944-b616-4ea6-9507-e9fb6fcdbe2b": {
      "ai_languageModel": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "46a5b8c6-3d34-4e9b-b812-23135f28c278": {
      "ai_embedding": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "96b776a0-10da-4f70-99d0-ad6b6ee8fcca": {
      "ai_embedding": [
        [
          {
            "node": "5f7f2fd8-276f-4b3a-ae88-1f1765967883",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "55d0b00a-5046-45fa-87cb-cb0257caae87": {
      "ai_languageModel": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "561b0737-26d5-450d-bd9e-08e0a608d6f9": {
      "ai_document": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "0c54049e-b5e8-448f-b864-39aeb274de3e": {
      "ai_memory": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8": {
      "main": [
        [
          {
            "node": "f3b44ef5-e928-4662-81ef-4dd044829607",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c47f0ae6-106d-46da-afc3-f7afb86923ff": {
      "main": [
        [
          {
            "node": "f3b44ef5-e928-4662-81ef-4dd044829607",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "71ee28f5-84a2-4c6c-855a-6c7c09b2d62a": {
      "ai_outputParser": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "298ffc29-1d60-4c05-92c6-a61071629a3f": {
      "ai_tool": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "5f7f2fd8-276f-4b3a-ae88-1f1765967883": {
      "ai_tool": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "86ddd018-3d6b-46b9-aa93-dedd6c6b5076": {
      "main": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3aeb973d-22e5-4eaf-8fe8-fae3447909e1": {
      "main": [
        [
          {
            "node": "695fba89-8f42-47c3-9d86-73f4ea0e72df",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0ec2c505-5721-41af-91c8-1b0b55826d9e": {
      "main": [
        [
          {
            "node": "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0b9897b0-149b-43ce-b66c-e78552729aa5": {
      "main": [
        [
          {
            "node": "3aeb973d-22e5-4eaf-8fe8-fae3447909e1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Intelligence Artificielle, Opérations de sécurité

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds26
Catégorie2
Types de nœuds17
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Angel Menendez

Angel Menendez

@djangelic

Angel Menendez is a Staff Developer Advocate at n8n.io, specializing in low-code tools for cybersecurity workflows. From Puerto Rico, Angel's tech journey began by helping his father translate technical books. He later started a web development business and transitioned from a career as a flight attendant to cybersecurity engineering. His workflows have saved companies significant time. Outside work, Angel enjoys time with his two sons, riding electric bikes, reading, and exploring new places.

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34