🗼 Tour de contrôle de la chaîne d'approvisionnement piloté par l'IA (utilise BigQuery et GPT-4o)

Intermédiaire

Ceci est unAI, IT Opsworkflow d'automatisation du domainecontenant 11 nœuds.Utilise principalement des nœuds comme Code, GoogleBigQuery, Agent, ChatTrigger, LmChatOpenAi, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. 🗼 Tour de contrôle de la chaîne d'approvisionnement IA (utilisant BigQuery et GPT-4o)

Prérequis
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "6a5e68bcca67c4cdb3e0b698d01739aea084e1ec06e551db64aeff43d174cb23"
  },
  "nodes": [
    {
      "id": "53b36910-966f-45ba-a425-a3260a55059f",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        340,
        480
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "177235e8-c925-43d0-9695-10f072e26350",
      "name": "Agent de la tour de contrôle IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        380,
        240
      ],
      "parameters": {
        "options": {
          "systemMessage": "=You are an AI-powered SQL assistant specialized in supply chain analytics. \nYour role is to execute SQL queries on BigQuery and return only the results in a structured format.\n\nToday we are May 31, 2021.\n\n### **Behavior & Rules**\n1️⃣ **Query Execution:**\n   - Your only task is to process user requests and return **direct results** from BigQuery.\n   - Do **not** display the SQL query.\n   - Only return structured **data** as output.\n\n2️⃣ **Data Presentation:**\n   - Format the results as a **table** whenever possible.\n   - If results are numerical (counts, percentages, aggregates), return them **clearly and concisely**.\n   - If results contain multiple rows, return **only the first 10** for preview, unless the user specifies otherwise.\n\n3️⃣ **Handling Large Datasets:**\n   - If the user asks for many rows, show the first **100 rows max** unless specified.\n   - Provide a **summary** when dealing with large data instead of showing everything.\n\n4️⃣ **Response Format:**\n   - ✅ **For counts & metrics:**  \n     `\"There were 5,432 delayed shipments in the last 21 days.\"`\n   - ✅ **For tables:**  \n     | ShipmentID | City  | Store  | Order Date | Delivery Date | On Time? |\n     |-----------|-------|--------|------------|--------------|----------|\n     | 12345     | NYC   | ST1    | 2024-03-10 | 2024-03-15   | No       |\n     | 67890     | Paris | ST4    | 2024-03-11 | 2024-03-16   | Yes      |\n\n5️⃣ **Clarifying Unclear Requests:**\n   - If the user request is **too broad**, ask for clarification instead of running an expensive query.\n\n---\n\n### Schema Awareness\nAll SQL queries must use the BigQuery table:  \n`transport.shipments`  \n\nThis table includes fields such as:\n- `Shipment ID`, `City`, `Store`, `Order Date`, `Delivery Date`, `On Time Delivery`\n- As well as operational timestamps: `Transmission`, `Loading`, `Airport Arrival`, etc.\n- And status flags: `Transmission OnTime`, `Loading OnTime`, `Airport OnTime`, `Store Open`\n\nUse these fields appropriately when analyzing shipment performance.\n\n---\n\n### Tool Usage Instruction (for \"bigquery_tool\")\n\nWhenever you need to run a SQL query, use the tool called `bigquery_tool`.\n\nYou must provide the query in the following format:\n```json\n{\n  \"query\": \"SELECT COUNT(*) FROM `transport.shipments` WHERE `On Time Delivery` = FALSE\"\n}\n"
        }
      },
      "typeVersion": 1.8
    },
    {
      "id": "5366cc5f-85d3-44d2-9b1b-62febfcb44e3",
      "name": "Note adhésive 1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -100,
        -120
      ],
      "parameters": {
        "color": 7,
        "width": 200,
        "height": 520,
        "content": "### 1. Workflow Trigger with Chat\nThis workflow uses a simple chat window as a trigger. You can replace it with Telegram, Slack, Teams or a webhook trigger linked to your chat.\n\n#### How to setup?\n*Nothing to do.*\n"
      },
      "typeVersion": 1
    },
    {
      "id": "4218a062-12f8-437d-ab22-5a653a3089b2",
      "name": "Note adhésive 2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        140,
        -120
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 740,
        "content": "### 2. AI Agent equipped with the query tool\nIn order to have more control on the input of the BigQuery node, we don't use the BigQuery tool. Instead we have a set of nodes to retrieve the SQL query, clean it and send it to a BigQuery Node.\n\n#### How to setup?\n- **AI Agent with the Chat Model**:\n   1. Add a **chat model** with the required credentials *(Example: Open AI 4o-mini)*\n   2. Adapt the **name of your BigQuery table** in the system prompt *(Example: transports.shipments)*\n   3. Adapt the **tables fields explanation** in the system prompt\n  [Learn more about the AI Agent Node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n- Copy and past the **nodes in the yellow sticker** in another workflow. Point the query tool to this workflow.\n[Learn more about the Custom n8n Workflow Tool node](https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.toolworkflow)"
      },
      "typeVersion": 1
    },
    {
      "id": "c5967f58-00e8-4f03-9110-913547f7ab9c",
      "name": "Outil d'appel de requête",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        640,
        440
      ],
      "parameters": {
        "name": "bigquery_tool",
        "workflowId": {
          "__rl": true,
          "mode": "list",
          "value": "4Os7DoxHjFuTwWio",
          "cachedResultName": "🔨 Big Query Tool"
        },
        "description": "=Use this tool to run an SQL query and fetch the result from the BigQuery database.\n\nThe tool expects input in the following format:\n{\n  \"query\": \"SELECT COUNT(*) FROM `transport.shipments` WHERE `On Time Delivery` = FALSE\"\n}\n\nOnly provide the SQL query as a string inside the 'query' key. Do not include code formatting (like ```sql), comments, or explanations. The tool will return only the raw result from the database.\n",
        "workflowInputs": {
          "value": {
            "query": "={{ $fromAI(\"query\", \"SQL query to run\") }}"
          },
          "schema": [
            {
              "id": "query",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "query",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "query"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        }
      },
      "typeVersion": 2
    },
    {
      "id": "429813c8-b07f-4551-aeea-1744a1225449",
      "name": "Note adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        900,
        -120
      ],
      "parameters": {
        "width": 760,
        "height": 460,
        "content": "### 3. Big Query Workflow\nExecute the SQL query generated by the AI agent in Big Query. Retrieve the results and send them back to the AI Agent.\n\n### How to set up?\n- Paste these nodes in a separate workflow so you can use it with multiple agents.\n- **Google BigQuery API**:\n   1. Add your Google Translate API credentials\n   2. The project in which your table is located\n  [Learn more about the Google BigQuery Node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.googlebigquery)\n"
      },
      "typeVersion": 1
    },
    {
      "id": "bede0624-8923-4af0-8adc-8be22d556066",
      "name": "Interroger la base de données",
      "type": "n8n-nodes-base.googleBigQuery",
      "position": [
        1520,
        180
      ],
      "parameters": {
        "options": {},
        "sqlQuery": "={{ $json.query }}",
        "projectId": {
          "__rl": true,
          "mode": "list",
          "value": "=",
          "cachedResultUrl": "=",
          "cachedResultName": "="
        }
      },
      "notesInFlow": true,
      "typeVersion": 2.1
    },
    {
      "id": "137e4dbc-db8d-4ec7-a3e0-478dde6ef27c",
      "name": "Déclencheur exécuté par l'outil IA",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        960,
        180
      ],
      "parameters": {
        "workflowInputs": {
          "values": [
            {
              "name": "query"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "42a2801e-582e-4340-83af-ef0041eab4f9",
      "name": "Assainissement de la requête",
      "type": "n8n-nodes-base.code",
      "position": [
        1240,
        180
      ],
      "parameters": {
        "jsCode": "return [\n  {\n    json: {\n      query: $input.first().json.query.replace(/```sql|```/g, \"\").trim()\n    }\n  }\n];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "7c86fda0-116c-47ad-aaf5-8b83d2c083c6",
      "name": "Mémoire de chat",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        480,
        480
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "e1408ac1-24da-4d38-8fdf-c110a54d3f55",
      "name": "Chat avec l'utilisateur",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -60,
        240
      ],
      "webhookId": "ee7c418b-d7d6-41f9-8e87-0f71b8ae1cf9",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "bc49829b-45f2-4910-9c37-907271982f14",
      "name": "Note adhésive 3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        900,
        380
      ],
      "parameters": {
        "width": 780,
        "height": 540,
        "content": "### 4. Do you need more details?\nFind a step-by-step guide in this tutorial\n![Guide](https://www.samirsaci.com/content/images/2025/04/image.png)\n[🎥 Watch My Tutorial](https://www.loom.com/share/50271f9d50214d7184830985497a75ec?sid=d0c410dc-29f1-488f-b89a-4011de0ded07)"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "7c86fda0-116c-47ad-aaf5-8b83d2c083c6": {
      "ai_memory": [
        [
          {
            "node": "177235e8-c925-43d0-9695-10f072e26350",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "c5967f58-00e8-4f03-9110-913547f7ab9c": {
      "ai_tool": [
        [
          {
            "node": "177235e8-c925-43d0-9695-10f072e26350",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "53b36910-966f-45ba-a425-a3260a55059f": {
      "ai_languageModel": [
        [
          {
            "node": "177235e8-c925-43d0-9695-10f072e26350",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "e1408ac1-24da-4d38-8fdf-c110a54d3f55": {
      "main": [
        [
          {
            "node": "177235e8-c925-43d0-9695-10f072e26350",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "42a2801e-582e-4340-83af-ef0041eab4f9": {
      "main": [
        [
          {
            "node": "bede0624-8923-4af0-8adc-8be22d556066",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "137e4dbc-db8d-4ec7-a3e0-478dde6ef27c": {
      "main": [
        [
          {
            "node": "42a2801e-582e-4340-83af-ef0041eab4f9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Intermédiaire - Intelligence Artificielle, Opérations IT

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Intermédiaire
Nombre de nœuds11
Catégorie2
Types de nœuds9
Description de la difficulté

Adapté aux utilisateurs expérimentés, avec des workflows de complexité moyenne contenant 6-15 nœuds

Auteur
Samir Saci

Samir Saci

@samirsaci

Automation, AI and Analytics for Supply Chain & Business Optimization Helping businesses streamline operations using n8n, AI agents, and data science to enhance efficiency and sustainability. Linkedin: www.linkedin.com/in/samir-saci

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34