Extraction, résumé et analyse de sentiment de contenu de marque avec Bright Data

Avancé

Ceci est unAI, Marketingworkflow d'automatisation du domainecontenant 23 nœuds.Utilise principalement des nœuds comme Set, Function, HttpRequest, ManualTrigger, ReadWriteFile, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Extraire et analyser le contenu de marque avec Bright Data et Google Gemini

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API Google Gemini
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "wTI77cpLkbxsRQat",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Brand Content Extract, Summarize & Sentiment Analysis with Bright Data",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "646ef542-c601-4103-87e6-6fa9616d8c52",
      "name": "Lors du clic sur 'Tester le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        120,
        -560
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "00b4ce90-c4f2-41c4-8943-7db3d0c3f81a",
      "name": "Note autocollante",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        100,
        -320
      ],
      "parameters": {
        "width": 400,
        "height": 300,
        "content": "## Note\n\nThis workflow deals with the brand content extraction by utilizing the Bright Data Web Unlocker Product.\n\nThe Basic LLM Chain, Information Extraction, Summarization Chain are being used to demonstrate the usage of the N8N AI capabilities.\n\n**Please make sure to set the web URL of your interest within the \"Set URL and Bright Data Zone\" node and update the Webhook Notification URL**"
      },
      "typeVersion": 1
    },
    {
      "id": "5cc35b9b-7483-404e-96a3-1688f7b9078b",
      "name": "Note autocollante1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        540,
        -320
      ],
      "parameters": {
        "width": 480,
        "height": 300,
        "content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nBasic LLM Chain Data Extractor.\n\nInformation Extraction is being used for the handling the custom sentiment analysis with the structured response.\n\nSummarization Chain is being used for the creation of a concise summary of the extracted brand content."
      },
      "typeVersion": 1
    },
    {
      "id": "e15f32de-58d9-4ea6-9d5c-f63975d1090d",
      "name": "Extracteur de Données Textuelles depuis Markdown",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        1240,
        -440
      ],
      "parameters": {
        "text": "=You need to analyze the below markdown and convert to textual data. Please do not output with your own thoughts. Make sure to output with textual data only with no links, scripts, css etc.\n\n{{ $json.data }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are a markdown expert"
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.6
    },
    {
      "id": "1462cd3b-b1d5-4ddf-9f1e-2b8f20faa19c",
      "name": "Définir l'URL et la Zone Bright Data",
      "type": "n8n-nodes-base.set",
      "position": [
        340,
        -560
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "3aedba66-f447-4d7a-93c0-8158c5e795f9",
              "name": "url",
              "type": "string",
              "value": "https://www.amazon.com/TP-Link-Dual-Band-Archer-BE230-HomeShield/dp/B0DC99N2T8"
            },
            {
              "id": "4e7ee31d-da89-422f-8079-2ff2d357a0ba",
              "name": "zone",
              "type": "string",
              "value": "web_unlocker1"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "9783e878-e864-4632-9b89-d78567204053",
      "name": "Analyseur de Sentiment IA avec réponse structurée",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        1740,
        100
      ],
      "parameters": {
        "text": "=Perform the sentiment analysis on the below content and output with the structured information.\n\nHere's the content:\n\n{{ $('Perform Bright Data Web Request').item.json.data }}",
        "options": {
          "systemPromptTemplate": "You are an expert sentiment analyzer."
        },
        "schemaType": "manual",
        "inputSchema": "{\n  \"$schema\": \"http://json-schema.org/schema#\",\n  \"title\": \"SentimentAnalysisResponseArray\",\n  \"type\": \"array\",\n  \"items\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"sentiment\": {\n        \"type\": \"string\",\n        \"enum\": [\"Positive\", \"Neutral\", \"Negative\"],\n        \"description\": \"The overall sentiment of the content.\"\n      },\n      \"confidence_score\": {\n        \"type\": \"number\",\n        \"minimum\": 0,\n        \"maximum\": 1,\n        \"description\": \"Confidence score of the sentiment classification.\"\n      },\n      \"sentence\": {\n        \"type\": \"string\",\n        \"description\": \"A natural language statement explaining the sentiment.\"\n      }\n    },\n    \"required\": [\"sentiment\", \"confidence_score\", \"sentence\"],\n    \"additionalProperties\": false\n  }\n}\n"
      },
      "typeVersion": 1
    },
    {
      "id": "41352a53-7821-4247-905e-7995e1e6e382",
      "name": "Lancer une Notification Webhook pour l'Extraction de Données Textuelles depuis Markdown",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1720,
        -460
      ],
      "parameters": {
        "url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "summary",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "9717b5df-f148-4c8c-95d4-cb7c54837228",
      "name": "Lancer une Notification Webhook pour l'Analyseur de Sentiment IA",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2120,
        100
      ],
      "parameters": {
        "url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "summary",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "88733b5f-cbb0-42a6-898c-7a1ccc94bef7",
      "name": "Modèle de Chat Google Gemini pour le Résumé",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1260,
        -780
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "560e3d33-61d8-4db6-b1df-89f4e915f3f1",
      "name": "Modèle de Chat Google Gemini pour l'Extraction de Données",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1320,
        -220
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "1b07608f-7174-46e8-af27-3abf100d9e3a",
      "name": "Modèle de Chat Google Gemini pour l'Analyseur de Sentiment",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1820,
        320
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "b6b6df94-d3fc-45ee-a339-5a368ea000eb",
      "name": "Lancer une Notification Webhook pour le Résumé",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1660,
        -820
      ],
      "parameters": {
        "url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "summary",
              "value": "={{ $json.response.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "f3e60ecd-5d07-4df0-a413-327b24db23ab",
      "name": "Exécuter la Requête Web Bright Data",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        560,
        -560
      ],
      "parameters": {
        "url": "https://api.brightdata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "zone",
              "value": "={{ $json.zone }}"
            },
            {
              "name": "url",
              "value": "={{ $json.url }}?product=unlocker&method=api"
            },
            {
              "name": "format",
              "value": "raw"
            },
            {
              "name": "data_format",
              "value": "markdown"
            }
          ]
        },
        "genericAuthType": "httpHeaderAuth",
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "9030085f-5b05-41d9-94ee-668ee29df815",
      "name": "Résumer le Contenu",
      "type": "@n8n/n8n-nodes-langchain.chainSummarization",
      "position": [
        1240,
        -980
      ],
      "parameters": {
        "options": {
          "summarizationMethodAndPrompts": {
            "values": {
              "prompt": "Write a concise summary of the following:\n\n\n\"{text}\"\n\n"
            }
          }
        },
        "chunkingMode": "advanced"
      },
      "typeVersion": 2
    },
    {
      "id": "fe93c4a6-de3b-481d-ba6c-5f315f5279c4",
      "name": "Créer des données binaires pour les données textuelles",
      "type": "n8n-nodes-base.function",
      "position": [
        1720,
        -220
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "0811c300-1302-49b5-a334-ac8f960a5b8c",
      "name": "Créer des données binaires pour l'analyse de sentiment",
      "type": "n8n-nodes-base.function",
      "position": [
        2120,
        320
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "01d798b7-7c62-4240-9d5e-f2e67ca047ae",
      "name": "Écrire le fichier d'analyse de sentiment IA sur le disque",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2520,
        320
      ],
      "parameters": {
        "options": {},
        "fileName": "d:\\Brand-Content-Sentiment-Analysis.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "f9faf283-ba8d-48e1-860e-2bb660cb9c1e",
      "name": "Écrire le fichier textuel sur le disque",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2100,
        -220
      ],
      "parameters": {
        "options": {},
        "fileName": "d:\\Brand-Content-Textual.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "2c47c271-4456-4fc4-9a54-20784365a4af",
      "name": "Créer des données binaires pour le résumé",
      "type": "n8n-nodes-base.function",
      "position": [
        1660,
        -1060
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "c5f33f8d-93eb-47ac-a42f-717b39f4d7c2",
      "name": "Écrire le fichier de résumé sur le disque",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        1880,
        -1060
      ],
      "parameters": {
        "options": {},
        "fileName": "d:\\Brand-Content-Summary.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "72938f7b-20c1-45d3-9348-878d6e0b8d60",
      "name": "Note autocollante2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1200,
        -1080
      ],
      "parameters": {
        "color": 4,
        "width": 1100,
        "height": 460,
        "content": "## Summarization"
      },
      "typeVersion": 1
    },
    {
      "id": "fcf1d1ad-d516-41bc-bf76-73ebb920ecba",
      "name": "Note autocollante3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1720,
        40
      ],
      "parameters": {
        "color": 6,
        "width": 1000,
        "height": 480,
        "content": "## Sentiment Analysis"
      },
      "typeVersion": 1
    },
    {
      "id": "9c44d01f-e30b-4597-ad74-09fa54b4ec84",
      "name": "Note autocollante4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1200,
        -520
      ],
      "parameters": {
        "color": 3,
        "width": 1100,
        "height": 480,
        "content": "## Textual Data Extract"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "317a5d48-95c6-4425-a14a-6b2fec9e0802",
  "connections": {
    "9030085f-5b05-41d9-94ee-668ee29df815": {
      "main": [
        [
          {
            "node": "b6b6df94-d3fc-45ee-a339-5a368ea000eb",
            "type": "main",
            "index": 0
          },
          {
            "node": "2c47c271-4456-4fc4-9a54-20784365a4af",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1462cd3b-b1d5-4ddf-9f1e-2b8f20faa19c": {
      "main": [
        [
          {
            "node": "f3e60ecd-5d07-4df0-a413-327b24db23ab",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3e60ecd-5d07-4df0-a413-327b24db23ab": {
      "main": [
        [
          {
            "node": "e15f32de-58d9-4ea6-9d5c-f63975d1090d",
            "type": "main",
            "index": 0
          },
          {
            "node": "9030085f-5b05-41d9-94ee-668ee29df815",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "2c47c271-4456-4fc4-9a54-20784365a4af": {
      "main": [
        [
          {
            "node": "c5f33f8d-93eb-47ac-a42f-717b39f4d7c2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "646ef542-c601-4103-87e6-6fa9616d8c52": {
      "main": [
        [
          {
            "node": "1462cd3b-b1d5-4ddf-9f1e-2b8f20faa19c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e15f32de-58d9-4ea6-9d5c-f63975d1090d": {
      "main": [
        [
          {
            "node": "9783e878-e864-4632-9b89-d78567204053",
            "type": "main",
            "index": 0
          },
          {
            "node": "41352a53-7821-4247-905e-7995e1e6e382",
            "type": "main",
            "index": 0
          },
          {
            "node": "fe93c4a6-de3b-481d-ba6c-5f315f5279c4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "88733b5f-cbb0-42a6-898c-7a1ccc94bef7": {
      "ai_languageModel": [
        [
          {
            "node": "9030085f-5b05-41d9-94ee-668ee29df815",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "fe93c4a6-de3b-481d-ba6c-5f315f5279c4": {
      "main": [
        [
          {
            "node": "f9faf283-ba8d-48e1-860e-2bb660cb9c1e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "560e3d33-61d8-4db6-b1df-89f4e915f3f1": {
      "ai_languageModel": [
        [
          {
            "node": "e15f32de-58d9-4ea6-9d5c-f63975d1090d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "0811c300-1302-49b5-a334-ac8f960a5b8c": {
      "main": [
        [
          {
            "node": "01d798b7-7c62-4240-9d5e-f2e67ca047ae",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1b07608f-7174-46e8-af27-3abf100d9e3a": {
      "ai_languageModel": [
        [
          {
            "node": "9783e878-e864-4632-9b89-d78567204053",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "9783e878-e864-4632-9b89-d78567204053": {
      "main": [
        [
          {
            "node": "9717b5df-f148-4c8c-95d4-cb7c54837228",
            "type": "main",
            "index": 0
          },
          {
            "node": "0811c300-1302-49b5-a334-ac8f960a5b8c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9717b5df-f148-4c8c-95d4-cb7c54837228": {
      "main": [
        []
      ]
    },
    "41352a53-7821-4247-905e-7995e1e6e382": {
      "main": [
        []
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Intelligence Artificielle, Marketing

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Extraction de données Google Trends, résumé généré avec Bright Data et Google Gemini
Extraction et génération de résumés de données Google Trends avec Bright Data et Gemini
Set
Gmail
Function
+
Set
Gmail
Function
16 NœudsRanjan Dailata
Ingénierie
Automatisation du data mining Etsy avec Bright Data et Google Gemini
Automatisation de l'extraction de données Etsy avec Bright Data et Google Gemini
Set
Function
Split Out
+
Set
Function
Split Out
19 NœudsRanjan Dailata
Produit
Extraction et recherche de données ProductHunt pilotées par un agent IA (en utilisant Bright Data et Google Gemini)
Extraire et rechercher des données ProductHunt avec Bright Data MCP et Google Gemini AI
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 NœudsRanjan Dailata
Intelligence Artificielle
Extraction structurée de données de recherche Brave (Bright Data MCP + Google Gemini)
Extraire des données structurées à partir de recherches Brave avec Bright Data MCP et Google Gemini
Set
Switch
Function
+
Set
Switch
Function
24 NœudsRanjan Dailata
Intelligence Artificielle
Extraction, résumé et analyse des baisses de prix des produits Amazon avec Bright Data
utilisationBright DataetGoogle Geminiextraction、总结etanalyse亚马逊降价信息
Set
Wait
Merge
+
Set
Wait
Merge
26 NœudsRanjan Dailata
Intelligence Artificielle
Extraction de pages LinkedIn à l'aide du serveur MCP Bright Data et de Google Gemini
utilisationBright Data MCP服务器etGoogle GeminiextractionetconversionLinkedIndonnées
Set
Code
Merge
+
Set
Code
Merge
20 NœudsRanjan Dailata
Intelligence Artificielle
Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds23
Catégorie2
Types de nœuds10
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34