Évaluation de la précision des réponses RAG avec OpenAI : métriques basées sur les documents

Avancé

Ceci est unEngineering, AIworkflow d'automatisation du domainecontenant 25 nœuds.Utilise principalement des nœuds comme Set, Evaluation, HttpRequest, ManualTrigger, Agent, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Évaluer la précision des réponses RAG avec OpenAI : Indicateurs de base documentaire

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "976ded9c-2080-484e-ad64-eb3c6e671961",
      "name": "Lors du clic sur 'Exécuter le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -760,
        -320
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "348dfa43-be32-48a8-a9e1-a0641852517e",
      "name": "Obtenir la fiche technique",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -540,
        -320
      ],
      "parameters": {
        "url": "https://bitcoin.org/bitcoin.pdf",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "e4854cab-8bc9-4e63-911f-a9a4f5993855",
      "name": "Simple Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
      "position": [
        -300,
        -320
      ],
      "parameters": {
        "mode": "insert",
        "memoryKey": "evaluations_document_groundness",
        "clearStore": true
      },
      "typeVersion": 1.1
    },
    {
      "id": "f69492e2-c85a-451c-9e02-f5902f214da6",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -320,
        -100
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "65131cfb-ac44-48fa-a648-033c0611e8ea",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        -200,
        -100
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "origin",
                "value": "evaluations"
              }
            ]
          }
        },
        "dataType": "binary"
      },
      "typeVersion": 1
    },
    {
      "id": "0800667d-7b33-4c8b-bc61-d12ccf94a640",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        -120,
        100
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "04a8a558-07cf-41f4-85a9-37e79be90b52",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -300,
        620
      ],
      "parameters": {
        "options": {
          "systemMessage": "You are a helpful reference assistant who fully grounds their answer using retrieved knowledgebase document. It is important not to give any information from other sources as the goal is to be faithful to the contents of the knowledgebase.",
          "returnIntermediateSteps": true
        }
      },
      "typeVersion": 2
    },
    {
      "id": "6f6961f7-73c3-4e16-942e-e2da096fec94",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -320,
        845
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "a063f080-9227-471f-8330-3da574e275d1",
      "name": "Simple Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
      "position": [
        -200,
        847.5
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "toolName": "bitcoin_whitepaper",
        "memoryKey": "evaluations_document_groundness",
        "toolDescription": "Call this tool to query over the bitcoin whitepaper to answer technical questions about bitcoin."
      },
      "typeVersion": 1.1
    },
    {
      "id": "85584b59-0970-4bd9-ac96-f31a0046f20e",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -120,
        980
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "a99b3732-f8ac-45d3-a2f5-7a1177dc5742",
      "name": "À la réception d'un message de chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -540,
        725
      ],
      "webhookId": "638886a2-37cc-4edd-9b9f-95b09b255ffb",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "c21ee596-bc9c-4bb3-8cac-f243a2d5102b",
      "name": "Évaluation",
      "type": "n8n-nodes-base.evaluation",
      "position": [
        240,
        620
      ],
      "parameters": {
        "operation": "checkIfEvaluating"
      },
      "typeVersion": 4.6
    },
    {
      "id": "64104870-1796-4fcc-8c0d-cc4302de5167",
      "name": "No Operation, do nothing",
      "type": "n8n-nodes-base.noOp",
      "position": [
        460,
        720
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "91e0a42e-6afc-463b-8f25-7117b057159d",
      "name": "Obtenir les documents",
      "type": "n8n-nodes-base.set",
      "position": [
        460,
        480
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a1e75813-76a9-49ba-a8c1-1f2cd62d647c",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "94f08596-6060-4fb6-9998-ac1b3f0e730d",
              "name": "documents",
              "type": "array",
              "value": "={{\n$json.intermediateSteps\n  .find(step => step.action.tool === 'bitcoin_whitepaper')\n  .observation\n}}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8fba17b7-c24b-4a26-a998-e3d2f7acc481",
      "name": "Lors de la récupération d'une ligne de dataset",
      "type": "n8n-nodes-base.evaluationTrigger",
      "position": [
        -760,
        525
      ],
      "parameters": {
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 633230352,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit#gid=633230352",
          "cachedResultName": "RAG Document Groundedness"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=drivesdk",
          "cachedResultName": "96. Evaluations Test"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "XHvC7jIRR8A2TlUl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "611a6e12-f52b-4b3c-b74c-238a4f75f612",
      "name": "Remap Input",
      "type": "n8n-nodes-base.set",
      "position": [
        -540,
        525
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "cc14c8c8-5a61-46db-b1c7-6d9ddfb2e4c8",
              "name": "chatInput",
              "type": "string",
              "value": "={{ $json.input }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "0c1e25b8-9145-443e-8c9f-34eb62aa7192",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        660,
        660
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini",
          "cachedResultName": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "a9d8a911-9519-4497-9127-0a2e3da9ae1b",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        860,
        660
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"rating\": 1,\n  \"reason\": \"The date of birth of Einstein is mentioned clearly in the context.\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "038f408d-51f0-4625-b39d-e326f24850b4",
      "name": "Document Grounding",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        660,
        480
      ],
      "parameters": {
        "text": "=# Document and AI-generated Response\n## Documents\n{{ $json.documents\n  .map(doc => `* ${doc.text.parseJson().pageContent.replaceAll('\\n', ' ')}`)\n  .join('\\n')\n}}\n\n## AI-generated Response\n{{ $('Get Documents').first().json.output }}",
        "batching": {},
        "messages": {
          "messageValues": [
            {
              "message": "=# Instruction\nYou are an expert evaluator. Your task is to evaluate the quality of the responses generated by AI models.\nWe will provide you with the user input and an AI-generated responses.\nYou should first read the user input carefully for analyzing the task, and then evaluate the quality of the responses based on the criteria provided in the Evaluation section below.\nYou will assign the response a rating following the Rating Rubric and Evaluation Steps. Give step-by-step explanations for your rating, and only choose ratings from the Rating Rubric.\n\n# Evaluation\n## Metric Definition\nYou will be assessing groundedness, which measures the ability to provide or reference information included only in the user prompt.\n\n## Criteria\nGroundedness: The response contains information included only in the document. The response does not reference any outside information.\n\n## Rating Rubric\n1: (Fully grounded). All aspects of the response are attributable to the context.\n0: (Not fully grounded). The entire response or a portion of the response is not attributable to the context provided by the documents.\n\n## Evaluation Steps\nSTEP 1: Assess the response in aspects of Groundedness. Identify any information in the response not present in the documents and provide assessment according to the criterion. \nSTEP 2: Score based on the rating rubric. Give a brief rationale to explain your evaluation considering Groundedness."
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.7
    },
    {
      "id": "e867ed3e-df63-40e2-a3f6-0d19bbace13a",
      "name": "Set Outputs",
      "type": "n8n-nodes-base.evaluation",
      "position": [
        1020,
        480
      ],
      "parameters": {
        "outputs": {
          "values": [
            {
              "outputName": "output",
              "outputValue": "={{ $('Get Documents').item.json.output }}"
            },
            {
              "outputName": "documents",
              "outputValue": "={{ $('Get Documents').item.json.documents.map(doc => doc.text).join('\\n') }}"
            },
            {
              "outputName": "score",
              "outputValue": "={{ $json.output.rating }}"
            },
            {
              "outputName": "score_reason",
              "outputValue": "={{ $json.output.reason }}"
            }
          ]
        },
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 633230352,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit#gid=633230352",
          "cachedResultName": "RAG Document Groundedness"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=drivesdk",
          "cachedResultName": "96. Evaluations Test"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "XHvC7jIRR8A2TlUl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "7350d6c6-1a9d-4663-b509-de1c9d73588a",
      "name": "Set Metrics",
      "type": "n8n-nodes-base.evaluation",
      "position": [
        1220,
        480
      ],
      "parameters": {
        "metrics": {
          "assignments": [
            {
              "id": "e3f04944-ab59-4e2f-83f8-6efa36816671",
              "name": "score",
              "type": "number",
              "value": "={{ $json.output.rating }}"
            }
          ]
        },
        "operation": "setMetrics"
      },
      "typeVersion": 4.6
    },
    {
      "id": "e5313dae-6eff-4b71-83b1-0c89ff319662",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -840,
        -500
      ],
      "parameters": {
        "color": 7,
        "width": 960,
        "height": 780,
        "content": "## 1. Ready your RAG Vector Store\n[Read more about the Simple Vector Store](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/)\n\nFor this exercise, we'll use the Bitcoin Whitepaper as a source of documents for our evaluation."
      },
      "typeVersion": 1
    },
    {
      "id": "36da4904-2256-4d4a-9a1d-17ad3af939d4",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -840,
        300
      ],
      "parameters": {
        "color": 7,
        "width": 960,
        "height": 900,
        "content": "## 2. Setup Your AI Workflow to Use Evaluations\n[Learn more about the Evaluations Trigger](https://docs.n8n.io/integrations/builtin/?utm_source=n8n_app&utm_medium=node_settings_modal-credential_link&utm_campaign=n8n-nodes-base.evaluationTrigger)\n\nThe Evaluations Trigger is a separate execution which does not affect your production workflow in any way. It is manually triggered and automatically pulled datasets from the assigned Google Sheet."
      },
      "typeVersion": 1
    },
    {
      "id": "d892b15f-126d-4fac-8458-167a9f4bf1b1",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        160,
        300
      ],
      "parameters": {
        "color": 7,
        "width": 1260,
        "height": 640,
        "content": "## 3. Document Groundedness: Is the AI response based on the retrieved documents?\n[Learn more about the Evaluations Node](https://docs.n8n.io/integrations/builtin/?utm_source=n8n_app&utm_medium=node_settings_modal-credential_link&utm_campaign=n8n-nodes-base.evaluation)\n\nFor this evaluation, we simply want to check if the Agent's answer was grounded in any of the documents retrieved from our vector store.\nA higher score represents a greater alignment between the retrieved information and the expected output, indicating that the retriever is effectively sourcing relevant and accurate content to aid the generator in producing contextually appropriate responses."
      },
      "typeVersion": 1
    },
    {
      "id": "c500b17e-0c27-4121-9f89-40531b83f48e",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1280,
        -500
      ],
      "parameters": {
        "width": 380,
        "height": 880,
        "content": "## Try It Out!\n### This n8n template demonstrates how to calculate the evaluation metric \"RAG document groundedness\" which in this scenario, measures the ability to provide or reference information included only in retrieved vector store documents.\n\nThe scoring approach is adapted from [https://cloud.google.com/vertex-ai/generative-ai/docs/models/metrics-templates#pointwise_groundedness](https://cloud.google.com/vertex-ai/generative-ai/docs/models/metrics-templates#pointwise_groundedness)\n\n### How it works\n* This evaluation works best for an agent that requires document retrieval from a vector store or similar source.\n* For our scoring, we need to collect the agent's response and the documents retrieved and use an LLM to assess if the former is based off the latter.\n* A key factor is to look out information in the response which is not mentioned in the documents.\n* A high score indicates LLM adherence and alignment whereas a low score could signal inadequate prompt or model hallucination.\n\n### Requirements\n* n8n version 1.94+\n* Check out this Google Sheet for a sample data [https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=sharing](https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=sharing)\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "04a8a558-07cf-41f4-85a9-37e79be90b52": {
      "main": [
        [
          {
            "node": "c21ee596-bc9c-4bb3-8cac-f243a2d5102b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c21ee596-bc9c-4bb3-8cac-f243a2d5102b": {
      "main": [
        [
          {
            "node": "91e0a42e-6afc-463b-8f25-7117b057159d",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "64104870-1796-4fcc-8c0d-cc4302de5167",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "611a6e12-f52b-4b3c-b74c-238a4f75f612": {
      "main": [
        [
          {
            "node": "04a8a558-07cf-41f4-85a9-37e79be90b52",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e867ed3e-df63-40e2-a3f6-0d19bbace13a": {
      "main": [
        [
          {
            "node": "7350d6c6-1a9d-4663-b509-de1c9d73588a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "348dfa43-be32-48a8-a9e1-a0641852517e": {
      "main": [
        [
          {
            "node": "e4854cab-8bc9-4e63-911f-a9a4f5993855",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "91e0a42e-6afc-463b-8f25-7117b057159d": {
      "main": [
        [
          {
            "node": "038f408d-51f0-4625-b39d-e326f24850b4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f69492e2-c85a-451c-9e02-f5902f214da6": {
      "ai_embedding": [
        [
          {
            "node": "e4854cab-8bc9-4e63-911f-a9a4f5993855",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "6f6961f7-73c3-4e16-942e-e2da096fec94": {
      "ai_languageModel": [
        [
          {
            "node": "04a8a558-07cf-41f4-85a9-37e79be90b52",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "038f408d-51f0-4625-b39d-e326f24850b4": {
      "main": [
        [
          {
            "node": "e867ed3e-df63-40e2-a3f6-0d19bbace13a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "85584b59-0970-4bd9-ac96-f31a0046f20e": {
      "ai_embedding": [
        [
          {
            "node": "a063f080-9227-471f-8330-3da574e275d1",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "0c1e25b8-9145-443e-8c9f-34eb62aa7192": {
      "ai_languageModel": [
        [
          {
            "node": "038f408d-51f0-4625-b39d-e326f24850b4",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "65131cfb-ac44-48fa-a648-033c0611e8ea": {
      "ai_document": [
        [
          {
            "node": "e4854cab-8bc9-4e63-911f-a9a4f5993855",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "e4854cab-8bc9-4e63-911f-a9a4f5993855": {
      "main": [
        []
      ]
    },
    "a063f080-9227-471f-8330-3da574e275d1": {
      "ai_tool": [
        [
          {
            "node": "04a8a558-07cf-41f4-85a9-37e79be90b52",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "a9d8a911-9519-4497-9127-0a2e3da9ae1b": {
      "ai_outputParser": [
        [
          {
            "node": "038f408d-51f0-4625-b39d-e326f24850b4",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "a99b3732-f8ac-45d3-a2f5-7a1177dc5742": {
      "main": [
        [
          {
            "node": "04a8a558-07cf-41f4-85a9-37e79be90b52",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8fba17b7-c24b-4a26-a998-e3d2f7acc481": {
      "main": [
        [
          {
            "node": "611a6e12-f52b-4b3c-b74c-238a4f75f612",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0800667d-7b33-4c8b-bc61-d12ccf94a640": {
      "ai_textSplitter": [
        [
          {
            "node": "65131cfb-ac44-48fa-a648-033c0611e8ea",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "976ded9c-2080-484e-ad64-eb3c6e671961": {
      "main": [
        [
          {
            "node": "348dfa43-be32-48a8-a9e1-a0641852517e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Ingénierie, Intelligence Artificielle

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds25
Catégorie2
Types de nœuds16
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Jimleuk

Jimleuk

@jimleuk

Freelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34