Analyse du centre d'appels (double validation IA avec le modèle DeepSeek)
Ceci est unCRM, AI Summarizationworkflow d'automatisation du domainecontenant 15 nœuds.Utilise principalement des nœuds comme Code, Webhook, HttpRequest, ManualTrigger, ChainLlm. Analyse du centre d'appels avec double validation AI par le modèle DeepSeek
- •Point de terminaison HTTP Webhook (généré automatiquement par n8n)
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
Nœuds utilisés (15)
{
"meta": {
"instanceId": "66ce8bb89c7868f862e0d2e755cd17c6a5aea7904e5504a5b2e292e317980443",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "613422d5-05db-4163-bcb0-3fdae9de260b",
"name": "Lors du clic sur 'Test workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1120,
60
],
"parameters": {},
"typeVersion": 1
},
{
"id": "9ec28d5b-6ea0-4a57-911e-9f4546b739a2",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-520,
-240
],
"parameters": {
"color": 7,
"width": 340,
"height": 440,
"content": "## Generate report\nUsing deepseek R1"
},
"typeVersion": 1
},
{
"id": "cf30eb86-2aad-4d33-a5c2-737239e63636",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-140,
-240
],
"parameters": {
"color": 7,
"width": 340,
"height": 440,
"content": "## Double-check\nUsing deepseek V3"
},
"typeVersion": 1
},
{
"id": "d799760f-83c5-4603-8eb8-3857807b364a",
"name": "HTTP Request",
"type": "n8n-nodes-base.httpRequest",
"position": [
300,
-140
],
"parameters": {
"url": "YOUR_CALL_BACK_API",
"method": "POST",
"options": {},
"jsonBody": "={\n data: \"{{$node['Report'].json.text}}\"\n}",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2
},
{
"id": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"name": "Rapport",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-480,
-140
],
"parameters": {
"text": "=You are a CRM data analyst assistant. Your task is to analyze the provided CRM data and generate valuable insights in Markdown format.\n\nYou will receive JSON data extracted from a CRM system that may include information about:\n- Call canter agents metrics.\n\n# ANALYSIS REQUIREMENTS\nAnalyze the data considering:\n1. Lead conversion rates and quality metrics\n2. Upsall\n3. Rank the agents with small description about every one.\n\n# OUTPUT FORMAT\nStructure your analysis in Markdown.\n\n# GUIDELINES\n- Focus on actionable insights rather than just describing the data\n- Use bullet points and tables when appropriate to improve readability\n- Include both positive findings and areas for improvement\n- Reference specific data points to support your analysis\n- Prioritize quality over quantity in your recommendations\n- Be concise yet thorough\n- If there are data quality issues or missing information, note these limitations\n- If you detect any unusual patterns or anomalies, highlight them\n\n# DATA\n```\n{{ JSON.stringify($input.first().json.body) }}\n```",
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "f51d601e-898c-4dd6-894b-2e4911a334db",
"name": "DeepSeek Reasonning",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
-400,
60
],
"parameters": {
"model": "deepseek-reasoner",
"options": {}
},
"credentials": {
"deepSeekApi": {
"id": "ltpFxb7M3kHaEBFD",
"name": "DeepSeek account"
}
},
"typeVersion": 1
},
{
"id": "9393be48-aebc-4f6c-b445-014633e0e289",
"name": "DeepSeek Chat",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
-20,
80
],
"parameters": {
"options": {}
},
"credentials": {
"deepSeekApi": {
"id": "ltpFxb7M3kHaEBFD",
"name": "DeepSeek account"
}
},
"typeVersion": 1
},
{
"id": "4a8dc360-fd3f-46a5-89e1-87ece59b0bb6",
"name": "Données d'exemple",
"type": "n8n-nodes-base.code",
"position": [
-860,
60
],
"parameters": {
"jsCode": "return {\n \"body\": \n // You can use any data as JSON\n // this is just example\n // data start here\n [\n {\n \"user\": {\n \"id\": 15,\n \"full_name\": \"lisa confirmation\",\n },\n \"productivity\": 44.67,\n \"total_leads\": 465,\n \"total_confirmed\": 291,\n \"total_delivred\": 130,\n \"total_in_proccess\": 119,\n \"total_cancled\": 0,\n \"total_returned\": 13,\n \"total_assign\": 495,\n \"total_need_confirmation\": 0,\n \"total_recheck\": 22,\n \"upsell\": 59,\n \"upsell_delivered\": 27,\n \"confirmation_rate\": 62.58\n },\n {\n \"user\": {\n \"id\": 1346,\n \"full_name\": \"Sallam Confirmation\",\n },\n \"productivity\": 42.29,\n \"total_leads\": 374,\n \"total_confirmed\": 253,\n \"total_delivred\": 107,\n \"total_in_proccess\": 96,\n \"total_cancled\": 0,\n \"total_returned\": 21,\n \"total_assign\": 459,\n \"total_need_confirmation\": 1,\n \"total_recheck\": 1,\n \"upsell\": 62,\n \"upsell_delivered\": 31,\n \"confirmation_rate\": 67.65\n }\n ]\n // data end here\n}"
},
"typeVersion": 2
},
{
"id": "41e36370-fa7a-4f6e-a439-15127dfc432d",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
-20
],
"parameters": {
"width": 480,
"height": 240,
"content": "## Test Workflow\nClick this button to test the workflow with example data"
},
"typeVersion": 1
},
{
"id": "e0d473e8-7a2e-4473-9af7-5f2f835990db",
"name": "Note adhésive8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
240
],
"parameters": {
"width": 480,
"height": 80,
"content": "## Just to test"
},
"typeVersion": 1
},
{
"id": "b0c31c3b-1fd0-485e-a54b-9a3045bcf09e",
"name": "Note adhésive7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
400
],
"parameters": {
"color": 4,
"width": 1540,
"height": 100,
"content": "## Do you need more help or have any suggestions?\nContact me at mediaplus.ma@gmail.com"
},
"typeVersion": 1
},
{
"id": "9a1f03ee-167f-44e3-ae12-61ab8d3789f2",
"name": "Note adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-520,
-360
],
"parameters": {
"color": 7,
"width": 720,
"height": 80,
"content": "## Change here\nYou can edit/add details about your goal by changing the AI promps.\n"
},
"typeVersion": 1
},
{
"id": "d91de9c8-835b-4232-a76b-e27554ad595d",
"name": "Webhook",
"type": "n8n-nodes-base.webhook",
"position": [
-980,
-300
],
"webhookId": "b408defb-315d-4676-b4c4-1dcebe81ffc0",
"parameters": {
"path": "b408defb-315d-4676-b4c4-1dcebe81ffc0",
"options": {},
"httpMethod": [
"POST",
"GET"
],
"multipleMethods": true
},
"typeVersion": 2
},
{
"id": "04c2da18-10c9-44df-8084-52b5901ecc18",
"name": "Note adhésive9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1020,
-380
],
"parameters": {
"color": 4,
"width": 200,
"height": 240,
"content": "## Production"
},
"typeVersion": 1
},
{
"id": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"name": "Revérification",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-100,
-140
],
"parameters": {
"text": "=You are a Data Analysis Verification Expert. Your task is to evaluate whether an AI-generated report accurately and completely analyzes the provided CRM data. You will assess the report quality and determine if it's compatible with the original input.\n\n# INPUT\nYou will receive:\n1. The original call center agent metrics data (JSON)\n2. The AI-generated analysis report in Markdown\n\n# VERIFICATION REQUIREMENTS\nEvaluate the report for:\n1. Factual accuracy - Do all numbers, rankings, and statements accurately reflect the data?\n2. Comprehensiveness - Does the report cover all required areas? (Lead conversion, Upsell, Agent ranking)\n3. Insight quality - Does the report provide meaningful insights beyond basic data description?\n4. Completeness - Are all agents included in the analysis?\n5. Format compliance - Is the report properly formatted in Markdown with appropriate sections?\n\n# OUTPUT FORMAT\nReturn a JSON object with the following structure:\n```json\n{\n \"verified\": true/false,\n \"score\": 1-10,\n \"quality_assessment\": \"Brief 2-4 sentence evaluation of report quality\",\n \"missing_elements\": [\"List any required elements missing from the report\"],\n \"inaccuracies\": [\"List any factual errors or misinterpretations\"],\n \"improvement_suggestions\": [\"Specific suggestions for report improvement\"]\n}\n```\n\n# EVALUATION CRITERIA\n- \"verified\": Set to true ONLY if the report is factually accurate, includes all agents, covers all required areas, and provides meaningful insights.\n- \"score\": Rate from 1-10 where:\n * 1-3: Poor report with major inaccuracies or missing elements\n * 4-6: Adequate report with some issues\n * 7-8: Good report with minor issues\n * 9-10: Excellent report with comprehensive analysis\n\n# GUIDELINES\n- Be thorough and precise in your verification\n- Check all numerical claims against the original data\n- Verify that all agents are properly ranked and described\n- Check that lead conversion rates and upsell metrics are accurately analyzed\n- Assess whether the insights are actionable and valuable\n- Maintain a balanced perspective, noting both strengths and weaknesses\n\n# ORIGINAL DATA\n{{ JSON.stringify($node[\"Example data\"].json.chatInput) }}\n\n# AI-GENERATED REPORT\n{{ $json.text }}",
"promptType": "define"
},
"typeVersion": 1.6
}
],
"pinData": {},
"connections": {
"bf0a8ab6-06e0-4564-96af-ddcf6795a845": {
"main": [
[
{
"node": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"type": "main",
"index": 0
}
]
]
},
"a1fb1cbc-391c-4918-b48f-8b44116921b8": {
"main": [
[
{
"node": "d799760f-83c5-4603-8eb8-3857807b364a",
"type": "main",
"index": 0
}
]
]
},
"d91de9c8-835b-4232-a76b-e27554ad595d": {
"main": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "main",
"index": 0
}
]
]
},
"4a8dc360-fd3f-46a5-89e1-87ece59b0bb6": {
"main": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "main",
"index": 0
}
]
]
},
"9393be48-aebc-4f6c-b445-014633e0e289": {
"ai_languageModel": [
[
{
"node": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"f51d601e-898c-4dd6-894b-2e4911a334db": {
"ai_languageModel": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"613422d5-05db-4163-bcb0-3fdae9de260b": {
"main": [
[
{
"node": "4a8dc360-fd3f-46a5-89e1-87ece59b0bb6",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Intermédiaire - CRM, Résumé IA
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Omar Akoudad
@mediaplusmaAutomation, Code, and Analytics for E-commerce businesses, We help businesses streamline operations using n8n, AI agents, and data science to enhance efficiency and scalability.
Partager ce workflow