Génération de titres et de méta-descriptions optimisés pour le SEO avec Bright Data et Gemini AI
Ceci est unMarket Research, Multimodal AIworkflow d'automatisation du domainecontenant 16 nœuds.Utilise principalement des nœuds comme Set, HttpRequest, GoogleSheets, ManualTrigger, SplitInBatches. Utiliser Bright Data et Gemini AI pour générer des titres et meta-descriptions optimisés SEO
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Informations d'identification Google Sheets API
- •Clé API Google Gemini
Nœuds utilisés (16)
Catégorie
{
"meta": {
"instanceId": "db80165df40cb07c0377167c050b3f9ab0b0fb04f0e8cae0dc53f5a8527103ca",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "63865e5c-9e83-49ad-8d51-02391ee9e36c",
"name": "Lors du clic sur 'Exécuter le workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1728,
464
],
"parameters": {},
"typeVersion": 1
},
{
"id": "e935f831-25e0-4325-b0a4-72dd632c6c46",
"name": "Récupérer les résultats de recherche Google JSON",
"type": "n8n-nodes-base.httpRequest",
"onError": "continueErrorOutput",
"position": [
-816,
480
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {
"batching": {
"batch": {}
},
"redirect": {
"redirect": {}
}
},
"sendBody": true,
"sendQuery": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "serp_api1"
},
{
"name": "url",
"value": "=https://www.google.com/search?q={{ $json.search_term .replaceAll(\" \", \"+\")}}&start=0&brd_json=1"
},
{
"name": "country",
"value": "={{ $json['country code'] }}"
},
{
"name": "format",
"value": "raw"
}
]
},
"genericAuthType": "httpHeaderAuth",
"queryParameters": {
"parameters": [
{
"name": "async",
"value": "true"
}
]
},
"headerParameters": {
"parameters": [
{
"name": "Accept",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "gfLRVcGG09VEZv5B",
"name": "Brightdata Header"
}
},
"typeVersion": 4.2,
"alwaysOutputData": true
},
{
"id": "ee4881f0-9148-493e-825e-ce2dde83fbae",
"name": "Obtenir les mots-clés",
"type": "n8n-nodes-base.googleSheets",
"position": [
-1520,
464
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw/edit#gid=0",
"cachedResultName": "Keywords to Track"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw/edit?usp=drivesdk",
"cachedResultName": "Position Tracking for Keyword + Dashboard "
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "ZAI2a6Qt80kX5a9s",
"name": "Google Sheets account✅ "
}
},
"typeVersion": 4.6
},
{
"id": "69fff95a-24de-4331-89a8-14d4ea25c066",
"name": "Boucler sur les éléments",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-1280,
464
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "9b6c4df9-90af-431a-9d85-54ea38c49155",
"name": "Modèle de chat Google Gemini",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
-400,
624
],
"parameters": {
"options": {}
},
"credentials": {
"googlePalmApi": {
"id": "Xp5T9q3YYxBIw2nd",
"name": "Google Gemini(PaLM) Api account✅"
}
},
"typeVersion": 1
},
{
"id": "4f164104-6881-4636-b238-d75c7d52f866",
"name": "Générer un nouveau titre et des métadescriptions",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-400,
464
],
"parameters": {
"text": "=You are an advanced SEO strategist and content optimization engine.\n\nYour task is to:\n1. Analyze the list of top-ranking page titles and meta descriptions for a given keyword.\n2. Infer common SEO patterns, content structure, and user search intent.\n3. Use these insights to generate a highly optimized new **Title** and **Meta Description** that:\n - Aligns with the dominant SERP format\n - Matches search intent\n - Stands out enough to drive clicks (CTR-optimized)\n - Includes the target keyword naturally\n - Sounds trustworthy, relevant, and modern\n\n---\n\n### Input Keyword:\n{{ $('set keyword').item.json.search_term }}\n### Top SERP Results (Titles + Descriptions):\n{{ $json.titlesDescriptions }}\n\n### \"People Also Ask\" Questions:\n{{ $json.paaQuestions }}\n\n---\n\n### Output Format:\n{\n \"intent\": \"[Label the dominant search intent. Examples: Listicle, How-to, Informational, Commercial, Review, Product Page, Case Study, etc.]\",\n \"dominant_patterns\": {\n \"title_structure\": \"[Respond only with the generalized pattern using placeholders. No full sentences. No explanations.]\",\n \"meta_structure\": \"[Respond only with the generalized meta pattern using placeholders. No full sentences. No explanations.]\"\n},\n \"optimized_title\": \"[SEO-optimized title for the keyword]\",\n \"optimized_meta\": \"[Well-written meta description under 160 characters]\",\n \"cta\": \"[Optional call-to-action if helpful]\"\n}\n",
"options": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 2
},
{
"id": "d150f732-b580-430b-9a2d-d225b73839f9",
"name": "Analyseur de sortie structurée1",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
-192,
656
],
"parameters": {
"jsonSchemaExample": "{\n \"intent\": \"[Label the dominant search intent. Examples: Listicle, How-to, Informational, Commercial, Review, Product Page, Case Study, etc.]\",\n \"dominant_patterns\": {\n \"title_structure\": \"[Respond only with the generalized pattern using placeholders. No full sentences. No explanations.]\",\n \"meta_structure\": \"[Respond only with the generalized meta pattern using placeholders. No full sentences. No explanations.]\"\n},\n \"optimized_title\": \"[SEO-optimized title for the keyword]\",\n \"optimized_meta\": \"[Well-written meta description under 160 characters]\",\n \"cta\": \"[Optional call-to-action if helpful]\"\n}"
},
"typeVersion": 1.3
},
{
"id": "8529bfb4-a3cb-4bc1-b83e-a6ed777bf1a8",
"name": "structure meta",
"type": "n8n-nodes-base.set",
"position": [
-80,
464
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "660979bb-be4d-4551-b15a-1963b9c1b4d1",
"name": "Keyword",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.search_term }}"
},
{
"id": "334b8afd-d8ae-4b75-8f03-3f9315870268",
"name": "intent",
"type": "string",
"value": "={{ $json.output.intent }}"
},
{
"id": "b2f9402c-7f22-4081-b5ac-494c6a3f9869",
"name": "dominant_patterns - meta_structure",
"type": "string",
"value": "={{ $json.output.dominant_patterns.meta_structure }}"
},
{
"id": "018ce0e2-5af2-40df-adc5-2ab1d8977d05",
"name": "dominant_patterns - title_structure",
"type": "string",
"value": "={{ $json.output.dominant_patterns.title_structure }}"
},
{
"id": "6890732d-c773-4254-bb3d-2acdcab32ef2",
"name": "optimized_title",
"type": "string",
"value": "={{ $json.output.optimized_title }}"
},
{
"id": "99ef63dc-c8e3-48e5-8d29-9c7019b019b2",
"name": "optimized_meta",
"type": "string",
"value": "={{ $json.output.optimized_meta }}"
},
{
"id": "d4768bd4-23c0-4bf1-8e88-51c21e314cf9",
"name": "cta",
"type": "string",
"value": "={{ $json.output.cta }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "b1271960-96c0-48a4-9bd6-07325b0ea5e1",
"name": "Créer une nouvelle meta et structure",
"type": "n8n-nodes-base.googleSheets",
"position": [
112,
464
],
"parameters": {
"columns": {
"value": {},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "country code",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "country code",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "domain",
"type": "string",
"display": true,
"required": false,
"displayName": "domain",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "page",
"type": "string",
"display": true,
"required": false,
"displayName": "page",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Position",
"type": "string",
"display": true,
"required": false,
"displayName": "Position",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "intent",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "intent",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "dominant_patterns - meta_structure",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "dominant_patterns - meta_structure",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "dominant_patterns - title_structure",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "dominant_patterns - title_structure",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "optimized_title",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "optimized_title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "optimized_meta",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "optimized_meta",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "CTA",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "CTA",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "cta",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "cta",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "autoMapInputData",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw/edit#gid=0",
"cachedResultName": "Keywords to Track"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw/edit?usp=drivesdk",
"cachedResultName": "Position Tracking for Keyword + Dashboard "
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "ZAI2a6Qt80kX5a9s",
"name": "Google Sheets account✅ "
}
},
"typeVersion": 4.6
},
{
"id": "70796069-27d9-4076-8936-e5ec75ab42e8",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-608,
384
],
"parameters": {
"width": 980,
"height": 504,
"content": "## Analyze title and meta description formats for top 10 pages"
},
"typeVersion": 1
},
{
"id": "ad89de82-a005-4851-8c40-102b83f3c912",
"name": "Note adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1584,
384
],
"parameters": {
"width": 200,
"height": 320,
"content": "- Make a copy of this [G sheet](https://docs.google.com/spreadsheets/d/1QU9rwawCZLiYW8nlYYRMj-9OvAUNZoe2gP49KbozQqw/edit?usp=sharing)\n\n- Add your desired keywords"
},
"typeVersion": 1
},
{
"id": "571a1981-a9f3-4b66-8c9f-3d4779425df6",
"name": "Note adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1344,
288
],
"parameters": {
"color": 5,
"width": 200,
"height": 340,
"content": "- We loop over each item one at a time"
},
"typeVersion": 1
},
{
"id": "5b39d950-56e9-4069-81f0-8a061a56795d",
"name": "définir le mot-clé",
"type": "n8n-nodes-base.set",
"position": [
-1008,
480
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "cee3c6fe-dc44-43b2-9243-a1f1a62f9fa1",
"name": "search_term",
"type": "string",
"value": "={{ $json.Keyword }}"
},
{
"id": "3c58a493-6d15-4b90-bc5a-154d6f6d6474",
"name": "country code",
"type": "string",
"value": "={{ $json['country code'] }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "72f54c66-32df-45a4-8b1d-84a02cc7c4b8",
"name": "Note adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1024,
400
],
"parameters": {
"color": 4,
"width": 340,
"height": 320,
"content": "- Map keyword and country code \n- Update the Zone name to match your zone on Bright Data\n- Run the scraper"
},
"typeVersion": 1
},
{
"id": "49eb27cd-0ced-498d-a85e-92c0928847a4",
"name": "Cartographier le mot-clé",
"type": "n8n-nodes-base.set",
"position": [
-576,
464
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "4a5b9b7c-184e-4269-bee1-36684b1c99fc",
"name": "titlesDescriptions",
"type": "array",
"value": "={{ $json.organic.map(item => ({ title: item.title, description: item.description })) }}"
},
{
"id": "27ae3f27-d185-4ef0-8aaa-7e65c87fa6f2",
"name": "paaQuestions",
"type": "array",
"value": "={{ $json.people_also_ask.map(item => item.question )}}"
},
{
"id": "cd6102fa-8c47-44ca-b302-53b52dcaeb4f",
"name": "search_term",
"type": "string",
"value": "={{ $('set keyword').item.json.search_term }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "ae34e2d9-17ec-4013-a1cc-1ed7b1adfcae",
"name": "Aucune opération, ne rien faire1",
"type": "n8n-nodes-base.noOp",
"position": [
-784,
784
],
"parameters": {},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"5b39d950-56e9-4069-81f0-8a061a56795d": {
"main": [
[
{
"node": "e935f831-25e0-4325-b0a4-72dd632c6c46",
"type": "main",
"index": 0
}
]
]
},
"ee4881f0-9148-493e-825e-ce2dde83fbae": {
"main": [
[
{
"node": "69fff95a-24de-4331-89a8-14d4ea25c066",
"type": "main",
"index": 0
}
]
]
},
"8529bfb4-a3cb-4bc1-b83e-a6ed777bf1a8": {
"main": [
[
{
"node": "b1271960-96c0-48a4-9bd6-07325b0ea5e1",
"type": "main",
"index": 0
}
]
]
},
"69fff95a-24de-4331-89a8-14d4ea25c066": {
"main": [
[],
[
{
"node": "5b39d950-56e9-4069-81f0-8a061a56795d",
"type": "main",
"index": 0
},
{
"node": "69fff95a-24de-4331-89a8-14d4ea25c066",
"type": "main",
"index": 0
}
]
]
},
"49eb27cd-0ced-498d-a85e-92c0928847a4": {
"main": [
[
{
"node": "4f164104-6881-4636-b238-d75c7d52f866",
"type": "main",
"index": 0
}
]
]
},
"9b6c4df9-90af-431a-9d85-54ea38c49155": {
"ai_languageModel": [
[
{
"node": "4f164104-6881-4636-b238-d75c7d52f866",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d150f732-b580-430b-9a2d-d225b73839f9": {
"ai_outputParser": [
[
{
"node": "4f164104-6881-4636-b238-d75c7d52f866",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"e935f831-25e0-4325-b0a4-72dd632c6c46": {
"main": [
[
{
"node": "49eb27cd-0ced-498d-a85e-92c0928847a4",
"type": "main",
"index": 0
}
],
[
{
"node": "ae34e2d9-17ec-4013-a1cc-1ed7b1adfcae",
"type": "main",
"index": 0
}
]
]
},
"63865e5c-9e83-49ad-8d51-02391ee9e36c": {
"main": [
[
{
"node": "ee4881f0-9148-493e-825e-ce2dde83fbae",
"type": "main",
"index": 0
}
]
]
},
"4f164104-6881-4636-b238-d75c7d52f866": {
"main": [
[
{
"node": "8529bfb4-a3cb-4bc1-b83e-a6ed777bf1a8",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Étude de marché, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Zacharia Kimotho
@imperolqAutomation expert with years of experience helping businesses improve their efficiency and productivity with smart automations that are affordable, scalable, and flexible.
Partager ce workflow