Agents IA - Recherche en temps réel
Ceci est unMarket Research, AI Chatbotworkflow d'automatisation du domainecontenant 9 nœuds.Utilise principalement des nœuds comme Agent, ToolSerpApi, LmChatOpenAi, ManualChatTrigger, LmChatGoogleGemini. utilisation Gemini AI et SerpAPI recherchedeautomatisation实时网络研究
- •Clé API OpenAI
- •Clé API Google Gemini
Nœuds utilisés (9)
Catégorie
{
"id": "H2W1Jyu1gKhpQk52",
"meta": {
"instanceId": "ed6d846a2fce1f660ede2e7da800724cca01dc3d0685524a3c917881b7cfcfe9",
"templateCredsSetupCompleted": true
},
"name": "AI Agents - Real Time Research",
"tags": [],
"nodes": [
{
"id": "a2b142d1-90ea-42ae-9907-8bc5c4241221",
"name": "À la réception du message",
"type": "@n8n/n8n-nodes-langchain.manualChatTrigger",
"position": [
-200,
0
],
"parameters": {},
"typeVersion": 1.1
},
{
"id": "358ad390-f42b-411a-8c09-43ddfc406896",
"name": "Modèle de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
160,
380
],
"parameters": {
"model": "gpt-4",
"options": {}
},
"credentials": {
"openAiApi": {
"id": "qULV9xA6eq3tfpye",
"name": "OpenAi - nhu.le"
}
},
"typeVersion": 1
},
{
"id": "9dce7253-4994-47f5-a8db-dd7b64f28eb4",
"name": "Window Buffer Mémoire",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
320,
220
],
"parameters": {},
"typeVersion": 1.2
},
{
"id": "7cf5d7f7-b52b-4512-ba66-7377963b8ce2",
"name": "SerpAPI - Research",
"type": "@n8n/n8n-nodes-langchain.toolSerpApi",
"position": [
500,
220
],
"parameters": {
"options": {}
},
"credentials": {
"serpApi": {
"id": "2ZhdogyvgJsETC97",
"name": "SerpAPI - toan.ngo"
}
},
"typeVersion": 1
},
{
"id": "a590584e-ff8e-4db7-b793-cd0c43dab1b0",
"name": "Agent IAs - Real Time Research",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
260,
0
],
"parameters": {
"options": {}
},
"typeVersion": 1.6
},
{
"id": "aaa5e82d-a0ff-4541-936d-2ddcefe447ac",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-320,
-300
],
"parameters": {
"color": 4,
"width": 360,
"height": 820,
"content": "## 1. Start When A Chat Message Is Received\n- The workflow is triggered whenever a chat message is received (e.g., a user question, research prompt, or data request)."
},
"typeVersion": 1
},
{
"id": "77bea2dc-9e15-4cbf-8865-945778138559",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1120,
-300
],
"parameters": {
"width": 740,
"height": 1420,
"content": "## [n8n Automation] Real-time Research AI Agent - Try It Out!\n**This workflow demonstrates how to automate live information gathering, fact-checking, and trend analysis in response to any chat message - using a powerful AI agent, memory, and a real-time search tool.**\n\nUse cases are many: This is perfect for **researchers** needing instant, up-to-date data; **support teams** providing live, accurate answers; **content creators** looking to verify facts or find hot topics; and **analysts** automating regular reports with the freshest information.\n\n## How It Works\n- The workflow is triggered whenever a chat message is received (e.g., a user question, research prompt, or data request).\n- The message is sent to the AI Agent, which follows the following steps:\n - First, it queries **SerpAPI – Research** to gather the latest real-time information and data from the web.\n - Next, it checks the **Window Buffer Memory** for any related past interactions or contextual information that may be useful.\n - Finally, it sends all collected data and context to the **Google Gemini Chat Model**, which analyzes the information and generates a comprehensive, intelligent response.\n- Then, the AI Agent delivers the analyzed, up-to-date answer directly in the chat, combining live data, context, and expert analysis.\n\n## How To Set Up\n- Download and import the workflow into your n8n workspace.\n- Set up API credentials and tool access for the **AI Agent**:\n - **Google Gemini** (for chat-based intelligence) → connected to Node **Google Gemini Chat Model**.\n - **SerpAPI** (for real-time web and search results) → connected to Node **SerpAPI - Research**.\n - **Window Buffer Memory** (for richer, context-aware conversations) → connected to Node Window **Buffer Memory**.\n- Open the chat in n8n and type the topic or trend you want to research.\n- Send the message and wait for the process to complete.\n- Receive the AI-powered research reply in the chat box.\n\n## Requirements\n- An **n8n** instance (self-hosted or cloud).\n- **SerpAPI** credentials for live web search and data gathering.\n- **Window Buffer Memory** configured to provide relevant conversation context in history.\n- **Google Gemini API** access to analyze collected data and generate responses.\n\n## How To Customize\n- **Choose your preferred AI model**: Replace **Google Gemini** with **OpenAI ChatGPT**, or any other chat model as preferred.\n- **Add or change memory**: Replace **Window Buffer Memory** with more advanced memory options for deeper recall.\n- **Connect your preferred chat platform**: Easily swap out the default chat integration for Telegram, Slack, or any other compatible messaging platform to trigger and interact with the workflow.\n\n## Need Help?\nIf you’d like this workflow customized, or if you’re looking to build a tailored AI Agent for your own business - please feel free to reach out to [**Agent Circle**](https://www.agentcircle.ai/). We’re always here to support and help you to bring automation ideas to life.\n\nJoin our community on different platforms for assistance, inspiration and tips from others.\n\nWebsite: https://www.agentcircle.ai/\nEtsy: https://www.etsy.com/shop/AgentCircle\nGumroad: http://agentcircle.gumroad.com/\nDiscord Global: https://discord.gg/d8SkCzKwnP\nFB Page Global: https://www.facebook.com/agentcircle/\nFB Group Global: https://www.facebook.com/groups/aiagentcircle/\nX: https://x.com/agent_circle\nYouTube: https://www.youtube.com/@agentcircle\nLinkedIn: https://www.linkedin.com/company/agentcircle\n\n\n"
},
"typeVersion": 1
},
{
"id": "b53905ce-0343-4713-9267-6f9b280a5be8",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
60,
-300
],
"parameters": {
"color": 4,
"width": 660,
"height": 820,
"content": "## 2. Process The Request & Return Response\n- The message is sent to the AI Agent, which follows the following steps:\n - First, it queries **SerpAPI – Research** to gather the latest real-time information and data from the web.\n - Next, it checks the **Window Buffer Memory** for any related past interactions or contextual information that may be useful.\n - Finally, it sends all collected data and context to the **Google Gemini Chat Model**, which analyzes the information and generates a comprehensive, intelligent response.\n- Then, the AI Agent delivers the analyzed, up-to-date answer directly in the chat, combining live data, context, and expert analysis."
},
"typeVersion": 1
},
{
"id": "b3e0c845-deaa-4147-940b-92efb4ef9475",
"name": "Modèle de chat Google Gemini",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
160,
220
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "AlDwotqhFT4EfJXQ",
"name": "Google Gemini(PaLM) Api - toan.ngo"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "404f0c7d-c796-40c6-b0e6-7944f1223081",
"connections": {
"OpenAI Chat Model": {
"ai_languageModel": [
[]
]
},
"7cf5d7f7-b52b-4512-ba66-7377963b8ce2": {
"ai_tool": [
[
{
"node": "AI Agents - Real Time Research",
"type": "ai_tool",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agents - Real Time Research",
"type": "ai_memory",
"index": 0
}
]
]
},
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agents - Real Time Research",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agents - Real Time Research",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Intermédiaire - Étude de marché, Chatbot IA
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Agent Circle
@agentcircleAgent Circle - A growing marketplace of AI agents, workflows, and toolkits — built to help teams automate smarter and scale faster
Partager ce workflow