Suivi de l'empreinte carbone

Avancé

Ceci est unDocument Extraction, AI Summarizationworkflow d'automatisation du domainecontenant 16 nœuds.Utilise principalement des nœuds comme Code, GoogleDrive, ScheduleTrigger, ScrapegraphAi. Analyseur de traçabilité de la empreinte carbone pour les rapports ESG sur Google Drive avec ScrapeGraphAI

Prérequis
  • Informations d'identification Google Drive API
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "CarbonFootprintTracker2025",
  "meta": {
    "instanceId": "carbon-tracker-sustainability-workflow-n8n",
    "templateCredsSetupCompleted": false
  },
  "name": "Carbon Footprint Tracker",
  "tags": [
    "sustainability",
    "esg",
    "carbon-footprint",
    "environmental",
    "reporting"
  ],
  "nodes": [
    {
      "id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
      "name": "Déclencheur Planifié",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        300,
        800
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "cronExpression",
              "expression": "0 8 * * *"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
      "name": "Collecteur de Données Énergétiques",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        700
      ],
      "parameters": {
        "userPrompt": "Extract energy consumption data and carbon emission factors. Use this schema: { \"energy_type\": \"electricity\", \"consumption_value\": \"1000\", \"unit\": \"kWh\", \"carbon_factor\": \"0.92\", \"emission_unit\": \"lbs CO2/kWh\", \"source\": \"EPA\", \"last_updated\": \"2024-01-15\" }",
        "websiteUrl": "https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c3d4e5f6-g7h8-9012-cdef-345678901234",
      "name": "Collecteur de Données de Transport",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        900
      ],
      "parameters": {
        "userPrompt": "Extract transportation emission factors and fuel efficiency data. Use this schema: { \"vehicle_type\": \"passenger_car\", \"fuel_type\": \"gasoline\", \"mpg\": \"25.4\", \"co2_per_gallon\": \"19.6\", \"co2_per_mile\": \"0.77\", \"unit\": \"lbs CO2\", \"source\": \"EPA\", \"category\": \"transport\" }",
        "websiteUrl": "https://www.fueleconomy.gov/feg/co2.jsp"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d4e5f6g7-h8i9-0123-defg-456789012345",
      "name": "Calculateur d'Empreinte",
      "type": "n8n-nodes-base.code",
      "position": [
        1000,
        800
      ],
      "parameters": {
        "jsCode": "// Carbon Footprint Calculator\nconst energyData = $input.item(0).json;\nconst transportData = $input.item(1).json;\n\n// Sample organizational data (in real scenario, this would come from your systems)\nconst organizationData = {\n  electricity_consumption: 50000, // kWh/month\n  natural_gas: 2000, // therms/month\n  fleet_miles: 15000, // miles/month\n  employee_commute: 25000, // miles/month\n  air_travel: 50000, // miles/month\n  employees: 100\n};\n\nfunction calculateCarbonFootprint(energyFactors, transportFactors, orgData) {\n  const calculations = {\n    scope1: {\n      natural_gas: orgData.natural_gas * 11.7, // lbs CO2 per therm\n      fleet_fuel: (orgData.fleet_miles / 25.4) * 19.6 // assuming 25.4 mpg\n    },\n    scope2: {\n      electricity: orgData.electricity_consumption * 0.92 // lbs CO2 per kWh\n    },\n    scope3: {\n      employee_commute: orgData.employee_commute * 0.77, // lbs CO2 per mile\n      air_travel: orgData.air_travel * 0.53, // lbs CO2 per mile\n      supply_chain: orgData.electricity_consumption * 0.1 // estimated\n    }\n  };\n\n  const totalScope1 = Object.values(calculations.scope1).reduce((a, b) => a + b, 0);\n  const totalScope2 = Object.values(calculations.scope2).reduce((a, b) => a + b, 0);\n  const totalScope3 = Object.values(calculations.scope3).reduce((a, b) => a + b, 0);\n  \n  const totalEmissions = totalScope1 + totalScope2 + totalScope3;\n  const emissionsPerEmployee = totalEmissions / orgData.employees;\n  \n  return {\n    timestamp: new Date().toISOString(),\n    total_emissions_lbs: Math.round(totalEmissions),\n    total_emissions_tons: Math.round(totalEmissions / 2000 * 100) / 100,\n    emissions_per_employee: Math.round(emissionsPerEmployee * 100) / 100,\n    scope1_total: Math.round(totalScope1),\n    scope2_total: Math.round(totalScope2),\n    scope3_total: Math.round(totalScope3),\n    breakdown: calculations,\n    baseline_data: orgData\n  };\n}\n\nconst footprintResults = calculateCarbonFootprint(\n  energyData.result || energyData,\n  transportData.result || transportData,\n  organizationData\n);\n\nreturn [{ json: footprintResults }];"
      },
      "typeVersion": 2
    },
    {
      "id": "e5f6g7h8-i9j0-1234-efgh-567890123456",
      "name": "Détecteur d'Opportunités de Réduction",
      "type": "n8n-nodes-base.code",
      "position": [
        1400,
        800
      ],
      "parameters": {
        "jsCode": "// Reduction Opportunity Finder\nconst footprintData = $input.first().json;\n\nfunction findReductionOpportunities(data) {\n  const opportunities = [];\n  const currentEmissions = data.total_emissions_tons;\n  \n  // Energy efficiency opportunities\n  if (data.scope2_total > data.scope1_total * 0.5) {\n    opportunities.push({\n      category: 'Energy Efficiency',\n      opportunity: 'LED lighting upgrade',\n      potential_reduction_tons: Math.round(currentEmissions * 0.08 * 100) / 100,\n      investment_required: '$25,000',\n      payback_period: '2.5 years',\n      priority: 'High',\n      implementation_effort: 'Medium'\n    });\n    \n    opportunities.push({\n      category: 'Renewable Energy',\n      opportunity: 'Solar panel installation',\n      potential_reduction_tons: Math.round(currentEmissions * 0.25 * 100) / 100,\n      investment_required: '$150,000',\n      payback_period: '7 years',\n      priority: 'High',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Transportation opportunities\n  if (data.breakdown.scope3.employee_commute > 5000) {\n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Remote work policy (3 days/week)',\n      potential_reduction_tons: Math.round(currentEmissions * 0.12 * 100) / 100,\n      investment_required: '$10,000',\n      payback_period: '6 months',\n      priority: 'High',\n      implementation_effort: 'Low'\n    });\n    \n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Electric vehicle fleet transition',\n      potential_reduction_tons: Math.round(currentEmissions * 0.15 * 100) / 100,\n      investment_required: '$200,000',\n      payback_period: '5 years',\n      priority: 'Medium',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Office efficiency\n  opportunities.push({\n    category: 'Office Operations',\n    opportunity: 'Smart HVAC system',\n    potential_reduction_tons: Math.round(currentEmissions * 0.06 * 100) / 100,\n    investment_required: '$40,000',\n    payback_period: '4 years',\n    priority: 'Medium',\n    implementation_effort: 'Medium'\n  });\n  \n  const totalPotentialReduction = opportunities.reduce(\n    (sum, opp) => sum + opp.potential_reduction_tons, 0\n  );\n  \n  return {\n    current_footprint: data,\n    opportunities: opportunities,\n    total_potential_reduction_tons: Math.round(totalPotentialReduction * 100) / 100,\n    potential_reduction_percentage: Math.round((totalPotentialReduction / currentEmissions) * 100),\n    analysis_date: new Date().toISOString()\n  };\n}\n\nconst reductionAnalysis = findReductionOpportunities(footprintData);\n\nreturn [{ json: reductionAnalysis }];"
      },
      "typeVersion": 2
    },
    {
      "id": "f6g7h8i9-j0k1-2345-fghi-678901234567",
      "name": "Tableau de Bord Durabilité",
      "type": "n8n-nodes-base.code",
      "position": [
        1800,
        800
      ],
      "parameters": {
        "jsCode": "// Sustainability Dashboard Data Formatter\nconst analysisData = $input.first().json;\n\nfunction createDashboardData(data) {\n  const footprint = data.current_footprint;\n  const opportunities = data.opportunities;\n  \n  // KPI Cards Data\n  const kpis = {\n    total_emissions: {\n      value: footprint.total_emissions_tons,\n      unit: 'tons CO2e',\n      trend: '+5.2%', // This would be calculated from historical data\n      status: footprint.total_emissions_tons > 100 ? 'warning' : 'good'\n    },\n    emissions_per_employee: {\n      value: footprint.emissions_per_employee,\n      unit: 'lbs CO2e/employee',\n      trend: '+2.1%',\n      status: 'improving'\n    },\n    reduction_potential: {\n      value: data.potential_reduction_percentage,\n      unit: '%',\n      trend: 'new',\n      status: 'opportunity'\n    },\n    cost_savings_potential: {\n      value: Math.round(data.total_potential_reduction_tons * 50), // $50 per ton estimate\n      unit: '$/year',\n      trend: 'projected',\n      status: 'positive'\n    }\n  };\n  \n  // Scope Breakdown for Charts\n  const scopeBreakdown = {\n    labels: ['Scope 1 (Direct)', 'Scope 2 (Electricity)', 'Scope 3 (Indirect)'],\n    data: [footprint.scope1_total, footprint.scope2_total, footprint.scope3_total],\n    colors: ['#FF6B6B', '#4ECDC4', '#45B7D1']\n  };\n  \n  // Monthly Trend (simulated - would be from historical data)\n  const monthlyTrend = {\n    labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],\n    emissions: [85, 78, 92, 88, 95, footprint.total_emissions_tons],\n    target: [80, 80, 80, 80, 80, 80]\n  };\n  \n  // Top Opportunities for Action Items\n  const topOpportunities = opportunities\n    .sort((a, b) => b.potential_reduction_tons - a.potential_reduction_tons)\n    .slice(0, 5)\n    .map(opp => ({\n      ...opp,\n      impact_score: Math.round((opp.potential_reduction_tons / data.total_potential_reduction_tons) * 100)\n    }));\n  \n  return {\n    dashboard_data: {\n      kpis: kpis,\n      scope_breakdown: scopeBreakdown,\n      monthly_trend: monthlyTrend,\n      top_opportunities: topOpportunities,\n      last_updated: new Date().toISOString(),\n      next_update: new Date(Date.now() + 24*60*60*1000).toISOString()\n    },\n    raw_analysis: data\n  };\n}\n\nconst dashboardData = createDashboardData(analysisData);\n\nreturn [{ json: dashboardData }];"
      },
      "typeVersion": 2
    },
    {
      "id": "g7h8i9j0-k1l2-3456-ghij-789012345678",
      "name": "Générateur de Rapport ESG",
      "type": "n8n-nodes-base.code",
      "position": [
        2200,
        800
      ],
      "parameters": {
        "jsCode": "// ESG Report Generator\nconst dashboardData = $input.first().json;\nconst data = dashboardData.raw_analysis;\nconst kpis = dashboardData.dashboard_data.kpis;\n\nfunction generateESGReport(analysisData, kpiData) {\n  const reportDate = new Date().toLocaleDateString('en-US', {\n    year: 'numeric',\n    month: 'long',\n    day: 'numeric'\n  });\n  \n  const executiveSummary = `\n**EXECUTIVE SUMMARY**\n\nOur organization's current carbon footprint stands at ${analysisData.current_footprint.total_emissions_tons} tons CO2e, with emissions per employee at ${analysisData.current_footprint.emissions_per_employee} lbs CO2e. \n\nWe have identified ${analysisData.opportunities.length} key reduction opportunities that could decrease our emissions by ${analysisData.potential_reduction_percentage}% (${analysisData.total_potential_reduction_tons} tons CO2e annually).\n\n**KEY FINDINGS:**\n• Scope 2 emissions (electricity) represent ${Math.round((analysisData.current_footprint.scope2_total / analysisData.current_footprint.total_emissions_lbs) * 100)}% of total emissions\n• Transportation accounts for ${Math.round(((analysisData.current_footprint.breakdown.scope3.employee_commute + analysisData.current_footprint.breakdown.scope1.fleet_fuel) / analysisData.current_footprint.total_emissions_lbs) * 100)}% of our footprint\n• High-impact, low-cost opportunities exist in remote work policies and energy efficiency\n  `;\n  \n  const emissionsBreakdown = `\n**EMISSIONS BREAKDOWN**\n\n**Scope 1 (Direct Emissions): ${Math.round(analysisData.current_footprint.scope1_total/2000*100)/100} tons CO2e**\n• Natural Gas: ${Math.round(analysisData.current_footprint.breakdown.scope1.natural_gas)} lbs CO2e\n• Fleet Vehicles: ${Math.round(analysisData.current_footprint.breakdown.scope1.fleet_fuel)} lbs CO2e\n\n**Scope 2 (Indirect - Electricity): ${Math.round(analysisData.current_footprint.scope2_total/2000*100)/100} tons CO2e**\n• Purchased Electricity: ${Math.round(analysisData.current_footprint.breakdown.scope2.electricity)} lbs CO2e\n\n**Scope 3 (Other Indirect): ${Math.round(analysisData.current_footprint.scope3_total/2000*100)/100} tons CO2e**\n• Employee Commuting: ${Math.round(analysisData.current_footprint.breakdown.scope3.employee_commute)} lbs CO2e\n• Business Travel: ${Math.round(analysisData.current_footprint.breakdown.scope3.air_travel)} lbs CO2e\n• Supply Chain: ${Math.round(analysisData.current_footprint.breakdown.scope3.supply_chain)} lbs CO2e\n  `;\n  \n  const opportunitiesSection = analysisData.opportunities.map(opp => \n    `• **${opp.opportunity}** (${opp.category})\\n  Reduction: ${opp.potential_reduction_tons} tons CO2e | Investment: ${opp.investment_required} | Priority: ${opp.priority}`\n  ).join('\\n\\n');\n  \n  const recommendations = `\n**STRATEGIC RECOMMENDATIONS**\n\n**Immediate Actions (0-6 months):**\n1. Implement remote work policy (3 days/week) - High impact, low cost\n2. Upgrade to LED lighting across all facilities\n3. Establish employee sustainability awareness program\n\n**Medium-term Goals (6-18 months):**\n1. Install smart HVAC systems with automated controls\n2. Conduct comprehensive energy audit of all facilities\n3. Develop supplier sustainability scorecard\n\n**Long-term Commitments (1-3 years):**\n1. Transition to renewable energy sources (solar installation)\n2. Electrify vehicle fleet where feasible\n3. Achieve carbon neutrality through verified offsets\n\n**Financial Impact:**\nTotal estimated annual savings from all initiatives: $${Math.round(analysisData.total_potential_reduction_tons * 50).toLocaleString()}\nPayback period for major investments: 3-7 years\n  `;\n  \n  const fullReport = `\n# 🌱 CARBON FOOTPRINT & ESG REPORT\n**Generated: ${reportDate}**\n**Reporting Period: Current Month**\n**Organization: [Company Name]**\n\n${executiveSummary}\n\n${emissionsBreakdown}\n\n**REDUCTION OPPORTUNITIES**\n\n${opportunitiesSection}\n\n${recommendations}\n\n**COMPLIANCE & BENCHMARKING**\n• Current emissions intensity: ${analysisData.current_footprint.emissions_per_employee} lbs CO2e per employee\n• Industry benchmark: 1,200-1,800 lbs CO2e per employee (service sector)\n• Science-based target alignment: Reduction pathway defined for 1.5°C scenario\n\n**NEXT STEPS**\n1. Present findings to executive leadership\n2. Allocate budget for priority initiatives\n3. Establish monthly monitoring and reporting cadence\n4. Engage employees in sustainability initiatives\n\n---\n*This report was automatically generated using real-time data collection and analysis. For questions or detailed implementation planning, contact the Sustainability Team.*\n  `;\n  \n  return {\n    report_text: fullReport,\n    report_date: reportDate,\n    report_type: 'Carbon Footprint & ESG Analysis',\n    key_metrics: {\n      total_emissions: analysisData.current_footprint.total_emissions_tons,\n      reduction_potential: analysisData.potential_reduction_percentage,\n      cost_savings_potential: Math.round(analysisData.total_potential_reduction_tons * 50),\n      opportunities_count: analysisData.opportunities.length\n    },\n    file_name: `Carbon_Footprint_Report_${new Date().toISOString().split('T')[0]}.md`\n  };\n}\n\nconst esgReport = generateESGReport(data, kpis);\n\nreturn [{ json: esgReport }];"
      },
      "typeVersion": 2
    },
    {
      "id": "h8i9j0k1-l2m3-4567-hijk-890123456789",
      "name": "Créer Dossier de Rapports",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        700
      ],
      "parameters": {
        "name": "ESG_Reports",
        "options": {},
        "resource": "folder",
        "operation": "create"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
      "name": "Sauvegarder Rapport sur Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        900
      ],
      "parameters": {
        "name": "={{ $json.file_name }}",
        "driveId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $node['Create Reports Folder'].json.id }}"
        },
        "options": {
          "parents": [
            "={{ $node['Create Reports Folder'].json.id }}"
          ]
        },
        "operation": "upload",
        "binaryData": false,
        "fileContent": "={{ $json.report_text }}"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "sticky1-abcd-efgh-ijkl-mnop12345678",
      "name": "Info Déclencheur",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        100,
        450
      ],
      "parameters": {
        "color": 5,
        "width": 520,
        "height": 580,
        "content": "# Step 1: Daily Trigger ⏰\n\nThis trigger runs the carbon footprint analysis daily at 8:00 AM.\n\n## Configuration Options\n- **Schedule**: Daily at 8:00 AM (customizable)\n- **Alternative**: Manual trigger for on-demand analysis\n- **Timezone**: Adjustable based on your location\n\n## Purpose\n- Ensures consistent daily monitoring\n- Captures real-time data changes\n- Maintains historical tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky2-bcde-fghi-jklm-nopq23456789",
      "name": "Info Collecte de Données",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        400,
        450
      ],
      "parameters": {
        "color": 4,
        "width": 520,
        "height": 580,
        "content": "# Step 2: Data Collection 🌐\n\n**Energy Data Scraper** and **Transport Data Scraper** work in parallel to gather emission factors.\n\n## What it does\n- Scrapes EPA energy consumption data\n- Collects transportation emission factors\n- Gathers fuel efficiency metrics\n- Updates carbon conversion factors\n\n## Data Sources\n- EPA Greenhouse Gas Calculator\n- FuelEconomy.gov\n- Energy.gov databases"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky3-cdef-ghij-klmn-opqr34567890",
      "name": "Info Calculateur",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        800,
        450
      ],
      "parameters": {
        "color": 3,
        "width": 520,
        "height": 580,
        "content": "# Step 3: Footprint Calculator 🧮\n\nCalculates comprehensive carbon footprint across all scopes.\n\n## Calculations Include\n- **Scope 1**: Direct emissions (gas, fleet)\n- **Scope 2**: Electricity consumption\n- **Scope 3**: Commuting, travel, supply chain\n- **Per-employee metrics**\n- **Monthly comparisons**\n\n## Output\n- Total emissions in tons CO2e\n- Detailed breakdown by source\n- Baseline data for tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky4-defg-hijk-lmno-pqrs45678901",
      "name": "Info Opportunités",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1200,
        450
      ],
      "parameters": {
        "color": 6,
        "width": 520,
        "height": 580,
        "content": "# Step 4: Opportunity Analysis 🎯\n\nIdentifies specific reduction opportunities with ROI analysis.\n\n## Analysis Areas\n- **Energy Efficiency**: LED, HVAC, smart systems\n- **Renewable Energy**: Solar, wind options\n- **Transportation**: Remote work, EV fleet\n- **Operations**: Process improvements\n\n## For Each Opportunity\n- Potential CO2 reduction\n- Investment required\n- Payback period\n- Implementation difficulty"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky5-efgh-ijkl-mnop-qrst56789012",
      "name": "Info Tableau de Bord",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1600,
        450
      ],
      "parameters": {
        "color": 2,
        "width": 520,
        "height": 580,
        "content": "# Step 5: Dashboard Preparation 📊\n\nFormats data for sustainability dashboard visualization.\n\n## Dashboard Elements\n- **KPI Cards**: Key metrics with trends\n- **Scope Breakdown**: Pie charts by emission source\n- **Monthly Trends**: Historical progress tracking\n- **Action Items**: Priority opportunities\n\n## Data Outputs\n- Chart-ready JSON data\n- KPI summaries\n- Status indicators\n- Performance trends"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky6-fghi-jklm-nopq-rstu67890123",
      "name": "Info Rapport ESG",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2000,
        450
      ],
      "parameters": {
        "color": 1,
        "width": 520,
        "height": 580,
        "content": "# Step 6: ESG Report Generation 📋\n\nCreates comprehensive ESG compliance report.\n\n## Report Sections\n- **Executive Summary**: Key findings\n- **Emissions Breakdown**: Detailed analysis\n- **Reduction Opportunities**: Prioritized list\n- **Strategic Recommendations**: Action plan\n- **Financial Impact**: Cost-benefit analysis\n\n## Compliance Features\n- Science-based targets alignment\n- Industry benchmarking\n- Regulatory compliance tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky7-ghij-klmn-opqr-stuv78901234",
      "name": "Info Stockage",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2400,
        450
      ],
      "parameters": {
        "color": 7,
        "width": 520,
        "height": 580,
        "content": "# Step 7: Report Storage 💾\n\nSaves generated reports to Google Drive for team access.\n\n## Storage Features\n- **Organized Folders**: ESG_Reports directory\n- **Version Control**: Date-stamped files\n- **Team Access**: Shared drive integration\n- **Format**: Markdown for easy reading\n\n## File Management\n- Automatic folder creation\n- Standardized naming convention\n- Historical report retention\n- Easy sharing and collaboration"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "carbon-footprint-v1-2025-001",
  "connections": {
    "a1b2c3d4-e5f6-7890-abcd-ef1234567890": {
      "main": [
        [
          {
            "node": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
            "type": "main",
            "index": 0
          },
          {
            "node": "c3d4e5f6-g7h8-9012-cdef-345678901234",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b2c3d4e5-f6g7-8901-bcde-f23456789012": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "g7h8i9j0-k1l2-3456-ghij-789012345678": {
      "main": [
        [
          {
            "node": "h8i9j0k1-l2m3-4567-hijk-890123456789",
            "type": "main",
            "index": 0
          },
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d4e5f6g7-h8i9-0123-defg-456789012345": {
      "main": [
        [
          {
            "node": "e5f6g7h8-i9j0-1234-efgh-567890123456",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "i9j0k1l2-m3n4-5678-ijkl-901234567890": {
      "main": [
        []
      ]
    },
    "h8i9j0k1-l2m3-4567-hijk-890123456789": {
      "main": [
        [
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c3d4e5f6-g7h8-9012-cdef-345678901234": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "f6g7h8i9-j0k1-2345-fghi-678901234567": {
      "main": [
        [
          {
            "node": "g7h8i9j0-k1l2-3456-ghij-789012345678",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e5f6g7h8-i9j0-1234-efgh-567890123456": {
      "main": [
        [
          {
            "node": "f6g7h8i9-j0k1-2345-fghi-678901234567",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Extraction de documents, Résumé IA

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds16
Catégorie2
Types de nœuds5
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34