Transformer les interactions LinkedIn en prospects qualifiés avec l'IA et Apify
Ceci est unLead Generation, AI Summarizationworkflow d'automatisation du domainecontenant 26 nœuds.Utilise principalement des nœuds comme If, Set, Code, Wait, Airtable. Utiliser l'IA et Apify pour transformer les interactions avec les publications LinkedIn en prospects qualifiés
- •Clé API Airtable
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
Nœuds utilisés (26)
Catégorie
{
"meta": {
"instanceId": "8d70623c0c9f4448eda9626cd8185192c28447e191325b0c0d94d3f40d23be3a"
},
"nodes": [
{
"id": "89ac2fe8-a5df-4150-b921-318e641b429c",
"name": "If3",
"type": "n8n-nodes-base.if",
"position": [
1740,
440
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "fe7ae37d-2d50-4308-b340-b3cfed20a2f0",
"operator": {
"type": "boolean",
"operation": "true",
"singleValue": true
},
"leftValue": "={{ $json && Object.keys($json).length > 0 }}",
"rightValue": ""
}
]
},
"looseTypeValidation": true
},
"typeVersion": 2.2
},
{
"id": "2cc1a9bb-8b33-4af5-83ac-5af7906f778b",
"name": "Modifier les champs1",
"type": "n8n-nodes-base.set",
"position": [
1960,
440
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a8672809-182b-4e13-96e4-7a2550c8f796",
"name": "linkedin_scraper_out",
"type": "string",
"value": "={{ $('Aggregate').item.json.fullName[0] }}\n{{ $('Aggregate').item.json.jobTitle[0] }}\n{{ $('Aggregate').item.json.companyName[0] }}\n{{ $('Aggregate').item.json.companyIndustry[0] }}\n{{ $('Aggregate').item.json.companyWebsite[0] }}\n{{ $('Aggregate').item.json.topSkillsByEndorsements[0] }}\n{{ $('Aggregate').item.json.about[0] }}\n{{ $('Aggregate').item.json.title[0] }}\n{{ $('Aggregate').item.json.description[0] }}\n{{ $('Aggregate').item.json.text[0] }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "198608d6-f63c-41d1-b612-161c208a8514",
"name": "Analyseur de sortie structurée1",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
2340,
660
],
"parameters": {
"jsonSchemaExample": "{\n \"icp\": \"true/false\",\n \"reasoning\": \"Brief explanation of classification decision based on the data analysis\"\n}"
},
"typeVersion": 1.2
},
{
"id": "f48f1abd-b702-451f-8e75-4aabe1e3515f",
"name": "Lors du clic sur 'Tester le workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1660,
120
],
"parameters": {},
"typeVersion": 1
},
{
"id": "1124ab40-bbe3-4202-a16f-61228dbdb728",
"name": "Agréger",
"type": "n8n-nodes-base.aggregate",
"position": [
1000,
440
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{
"fieldToAggregate": "fullName"
},
{
"fieldToAggregate": "jobTitle"
},
{
"fieldToAggregate": "companyName"
},
{
"fieldToAggregate": "companyIndustry"
},
{
"fieldToAggregate": "companyWebsite"
},
{
"fieldToAggregate": "topSkillsByEndorsements"
},
{
"fieldToAggregate": "about"
},
{
"fieldToAggregate": "experiences[0].title"
},
{
"fieldToAggregate": "experiences[0].subComponents[0].description"
},
{
"fieldToAggregate": "experiences[1].title"
},
{
"fieldToAggregate": "experiences[1].subComponents[0].description[0].text"
}
]
}
},
"typeVersion": 1
},
{
"id": "25405123-3526-43b6-811e-afafb3796a39",
"name": "If",
"type": "n8n-nodes-base.if",
"position": [
-160,
140
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b7097e6a-a156-41ad-b506-ebcb78a1538c",
"operator": {
"type": "boolean",
"operation": "true",
"singleValue": true
},
"leftValue": "={{ $json && Object.keys($json).length > 0 }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "a22810dc-dee3-4e34-8f64-85e4026785fa",
"name": "Aucune opération, ne rien faire",
"type": "n8n-nodes-base.noOp",
"position": [
0,
0
],
"parameters": {},
"typeVersion": 1
},
{
"id": "cae1c603-11e7-4c83-bac1-008690c56a09",
"name": "Vérifier les doublons",
"type": "n8n-nodes-base.airtable",
"position": [
-380,
140
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": ""
},
"table": {
"__rl": true,
"mode": "id",
"value": ""
},
"options": {},
"operation": "search",
"authentication": "airtableOAuth2Api",
"filterByFormula": "=({Name} = \"{{ $json.profile_name }}\")"
},
"typeVersion": 2.1,
"alwaysOutputData": true
},
{
"id": "fd30b54c-a01a-4db5-8556-7ca3605b47d4",
"name": "Nettoyer les données",
"type": "n8n-nodes-base.set",
"position": [
-640,
140
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "28682a76-7670-4af5-a3c8-b85d485dcad8",
"name": "profile_urn",
"type": "string",
"value": "={{ $json.reactor.urn }}"
},
{
"id": "7bc40d85-d383-4b27-a89b-dc8607adc40a",
"name": "profile_name",
"type": "string",
"value": "={{ $json.reactor.name }}"
},
{
"id": "ce4d0feb-c803-4c6e-a448-b3f6921593c4",
"name": "profile_job_title",
"type": "string",
"value": "={{ $json.reactor.headline }}"
},
{
"id": "735110e2-a403-4cf3-bac2-c2fa598b7c67",
"name": "profile_linkedin_url",
"type": "string",
"value": "={{ $json.reactor.profile_url }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "de1ccf48-08d0-4058-964c-c9e940546e42",
"name": "Boucler sur les éléments",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-920,
120
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "c7676bae-f6c4-4746-a88f-ed877bb09d83",
"name": "Attendre la limite de débit",
"type": "n8n-nodes-base.wait",
"position": [
-1140,
120
],
"webhookId": "1a90f5d4-c201-4866-9b46-fb99e1a0a798",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "ea9be84c-663a-424b-9f82-49a1c0faad63",
"name": "Créer un nouvel enregistrement",
"type": "n8n-nodes-base.airtable",
"position": [
240,
140
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": ""
},
"table": {
"__rl": true,
"mode": "id",
"value": ""
},
"columns": {
"value": {
"URN": "={{ $('Clean Data').item.json.profile_urn }}",
"Name": "={{ $('Clean Data').item.json.profile_name }}",
"Title": "={{ $('Clean Data').item.json.profile_job_title }}",
"Profile URL": "={{ $('Clean Data').item.json.profile_linkedin_url }}"
},
"schema": [
{
"id": "URN",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "URN",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Name",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email Address",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Email Address",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Profile URL",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Profile URL",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "MSP?",
"type": "boolean",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "MSP?",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reason",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Reason",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "create",
"authentication": "airtableOAuth2Api"
},
"typeVersion": 2.1
},
{
"id": "3766e2ce-7f5f-430a-ac6d-d31c1ef595db",
"name": "Délai aléatoire",
"type": "n8n-nodes-base.code",
"position": [
460,
140
],
"parameters": {
"jsCode": "// Random Time Generator - Returns single random time object\n\n// Function to generate random seconds with decimal places\nfunction generateRandomSeconds(min = 0.1, max = 60, decimalPlaces = 1) {\n const randomValue = Math.random() * (max - min) + min;\n return Number(randomValue.toFixed(decimalPlaces));\n}\n\n// Generate single random time\nconst seconds = generateRandomSeconds(0.1, 60, 1);\n\n// Return array with single object (n8n requirement)\nreturn [{\n seconds: seconds,\n formatted: `${seconds} seconds`,\n milliseconds: seconds * 1000\n}];"
},
"typeVersion": 2
},
{
"id": "03fb46da-5027-4996-87d1-511b20860f34",
"name": "Attente à délai aléatoire",
"type": "n8n-nodes-base.wait",
"position": [
680,
140
],
"webhookId": "73d87027-2b93-4798-a496-05090671f858",
"parameters": {
"amount": "={{ $('Random Delay').item.json.seconds }}"
},
"typeVersion": 1.1
},
{
"id": "107aee62-4ced-47a6-8063-ac0f0ecc2e49",
"name": "Générateur de délai aléatoire",
"type": "n8n-nodes-base.code",
"position": [
1220,
440
],
"parameters": {
"jsCode": "// Random Time Generator - Returns single random time object\n\n// Function to generate random seconds with decimal places\nfunction generateRandomSeconds(min = 0.1, max = 60, decimalPlaces = 1) {\n const randomValue = Math.random() * (max - min) + min;\n return Number(randomValue.toFixed(decimalPlaces));\n}\n\n// Generate single random time\nconst seconds = generateRandomSeconds(0.1, 60, 1);\n\n// Return array with single object (n8n requirement)\nreturn [{\n seconds: seconds,\n formatted: `${seconds} seconds`,\n milliseconds: seconds * 1000\n}];\n"
},
"typeVersion": 2
},
{
"id": "139536cf-6039-48e7-a41f-21d98171bb33",
"name": "Nœud d'attente à délai aléatoire",
"type": "n8n-nodes-base.wait",
"position": [
1440,
440
],
"webhookId": "e77b3d5b-d56f-4cba-8d79-60781a0f327e",
"parameters": {
"amount": "={{ $('Random Delay Generator').item.json.seconds }}"
},
"typeVersion": 1.1
},
{
"id": "490c6df0-e206-4673-ad2a-fbb2c50bb5ae",
"name": "Mettre à jour l'enregistrement",
"type": "n8n-nodes-base.airtable",
"position": [
2560,
440
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": ""
},
"table": {
"__rl": true,
"mode": "id",
"value": ""
},
"columns": {
"value": {
"id": "={{ $('Create New Record').item.json.id }}",
"MSP?": "={{ $('AI ICP Classification').item.json.output.msp }}",
"Reason": "={{ $('AI ICP Classification').item.json.output.reasoning }}",
"Email Address": "={{$('Enrich LinkedIn Profile').first().json.email}}"
},
"schema": [
{
"id": "id",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "id",
"defaultMatch": true
},
{
"id": "URN",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "URN",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Name",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email Address",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Email Address",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Profile URL",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Profile URL",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "MSP?",
"type": "boolean",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "MSP?",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reason",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Reason",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"id"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"authentication": "airtableOAuth2Api"
},
"typeVersion": 2.1
},
{
"id": "5d693aa7-79b0-4a19-b7b6-888710743617",
"name": "Classification IA ICP",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
2180,
440
],
"parameters": {
"text": "=You are an AI classifier that determines if a person works for xxxx based on LinkedIn scraper data.\nTask: Analyze the provided LinkedIn data and classify the person as icp or non-icp.\n\nData input: {{ $('Edit Fields1').item.json.linkedin_scraper_out }}\n\nJob Indicators:\n\nJob titles containing: \n\nInstructions:\n\nIf scraper returns blank/no data → = false\nAnalyze job title, company name, company description, and industry\nLook for XXX-related keywords and services\nProvide classification with reasoning\n\nExamples:\nInput: No data returned from scraper\njson{\n \"icp\": false,\n \"reasoning\": \"No data returned from scraping\"\n}\nInput: Job Title: \"Senior Network Engineer at TechCorp MSP\"\njson{\n \"icp\": true,\n \"reasoning\": \"Job title indicates and company name explicitly mentions keywords\"\n}\nInput: Job Title: \"Marketing Manager at Nike\"\njson{\n \"icp\": false,\n \"reasoning\": \"Marketing role at retail company with no indication of managed keywords services\"\n} ",
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.6
},
{
"id": "623feb13-cc50-4d71-964c-e076af7f7987",
"name": "Extraire les réactions aux publications",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1380,
120
],
"parameters": {
"url": "https://api.apify.com/v2/acts/apimaestro~linkedin-post-reactions/run-sync-get-dataset-items?token= ",
"method": "POST",
"options": {},
"jsonBody": "{\n \"post_url\": \"YOUR_POST_URN\",\n \"page_number\": 1\n}",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2
},
{
"id": "63f90fba-ffaa-434e-bdd0-b5368f35f0f2",
"name": "Enrichir le profil LinkedIn",
"type": "n8n-nodes-base.httpRequest",
"position": [
780,
440
],
"parameters": {
"url": "https://api.apify.com/v2/acts/dev_fusion~linkedin-profile-scraper/run-sync-get-dataset-items?token=",
"method": "POST",
"options": {},
"jsonBody": "={\n \"profileUrls\": [\n \"{{ $('Clean Data').item.json.profile_linkedin_url }}\"\n ]\n}\n",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2,
"alwaysOutputData": true
},
{
"id": "a6c1e1e0-d708-42da-b234-a4cec31700e2",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2420,
-80
],
"parameters": {
"width": 640,
"height": 1040,
"content": "## 🎯 LinkedIn ICP Lead Qualification Automation\n\n### Automatically identify and qualify ideal customer prospects from LinkedIn post reactions using AI-powered analysis\n\nPerfect for sales teams, marketing professionals, and business development teams who want to turn LinkedIn engagement into qualified leads without manual research.\n\n### How it works\n* Scrapes LinkedIn post reactions to identify engaged users\n* Removes duplicates by checking existing records in Airtable\n* Enriches profiles with comprehensive LinkedIn data scraping\n* Uses AI to classify prospects as ICP matches with reasoning\n* Stores qualified leads with full contact and company information\n* Implements smart rate limiting to respect API constraints\n\n### How to use\n* Set up Apify API credentials for LinkedIn scraping actors\n* Configure Airtable base with prospect tracking fields\n* Add your LinkedIn post URL to start scraping reactions\n* Customize ICP criteria in the AI classification prompt\n* Run workflow to automatically qualify and store leads\n\n### Requirements\n* Apify account with API access\n* Airtable account with OAuth2 authentication\n* OpenAI or compatible AI model for classification\n* LinkedIn post URL with reactions to analyze\n\n### Good to know\n* **LinkedIn Safety**: Use only cookie-free Apify actors to prevent account detection\n* **Daily Limits**: Process maximum 1 page of reactions per day (50-100 profiles)\n* Apify actors cost ~$0.01-0.05 per profile scraped\n* Includes random delays to prevent rate limiting and account suspension\n* AI classification requires clear ICP criteria definition\n* Excessive scraping will trigger LinkedIn's anti-scraping measures and risk account suspension\n\nHappy Prospecting!"
},
"typeVersion": 1
},
{
"id": "6323c901-a4f8-4a41-b548-fe55e4576fff",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1660,
-240
],
"parameters": {
"color": 7,
"width": 400,
"height": 300,
"content": "## 1. Extract Post Reactions\n[Read more about the HTTP Request node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest/)\n\nScrapes LinkedIn post reactions using Apify's post reaction scraper to identify users who engaged with your content. This provides the initial list of prospects who have already shown interest in your topic."
},
"typeVersion": 1
},
{
"id": "005853d9-c286-47bc-ba22-4b8dd01865be",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-660,
-220
],
"parameters": {
"color": 7,
"width": 400,
"height": 300,
"content": "## 2. Clean & Deduplicate Prospects\n[Read more about the Set node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.set/)\n\nExtracts key profile information and checks against existing Airtable records to prevent duplicate processing. This saves API costs and ensures clean data management."
},
"typeVersion": 1
},
{
"id": "691b8dee-1378-4f02-82dd-0108b6bbbaad",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
620,
680
],
"parameters": {
"color": 7,
"width": 400,
"height": 300,
"content": "## 3. Enrich LinkedIn Profiles\n[Read more about the HTTP Request node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest/)\n\nUses Apify's LinkedIn profile scraper to gather comprehensive professional information including job titles, company details, skills, and experience data for accurate ICP assessment."
},
"typeVersion": 1
},
{
"id": "50fe618e-7334-4fe0-aaf7-459d705f1e99",
"name": "Note adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
2100,
60
],
"parameters": {
"color": 7,
"width": 400,
"height": 300,
"content": "## 4. AI-Powered ICP Classification\n[Read more about the LLM Chain node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/)\n\nAnalyzes enriched profile data using AI to determine if prospects match your Ideal Customer Profile. Provides reasoning for each classification decision to help refine your targeting criteria."
},
"typeVersion": 1
},
{
"id": "7fdca041-4a8b-4e98-b8dc-fef55ea10ee8",
"name": "Note adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
940,
-360
],
"parameters": {
"color": 3,
"width": 460,
"height": 420,
"content": "### ⚠️ LinkedIn Safety & Rate Limiting Warning!\nThis workflow uses paid Apify actors and requires careful usage to avoid LinkedIn account suspension.\n\n1. **CRITICAL**: Use ONLY cookie-free Apify actors to avoid LinkedIn detection\n2. **Daily Limits**: Scrape maximum 1 page of reactions per day (typically 50-100 profiles)\n3. Process full profile enrichment in small batches to stay under LinkedIn's radar\n4. Set up Apify API credentials in both HTTP Request nodes\n5. Never run multiple instances simultaneously - LinkedIn tracks usage patterns\n6. Budget approximately $0.01-0.05 per prospect analyzed for Apify costs\n7. Monitor Apify usage dashboard and LinkedIn account health regularly\n8. Modify AI prompt to suit your need"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"25405123-3526-43b6-811e-afafb3796a39": {
"main": [
[
{
"node": "a22810dc-dee3-4e34-8f64-85e4026785fa",
"type": "main",
"index": 0
}
],
[
{
"node": "ea9be84c-663a-424b-9f82-49a1c0faad63",
"type": "main",
"index": 0
}
]
]
},
"89ac2fe8-a5df-4150-b921-318e641b429c": {
"main": [
[
{
"node": "2cc1a9bb-8b33-4af5-83ac-5af7906f778b",
"type": "main",
"index": 0
}
],
[
{
"node": "2cc1a9bb-8b33-4af5-83ac-5af7906f778b",
"type": "main",
"index": 0
}
]
]
},
"1124ab40-bbe3-4202-a16f-61228dbdb728": {
"main": [
[
{
"node": "107aee62-4ced-47a6-8063-ac0f0ecc2e49",
"type": "main",
"index": 0
}
]
]
},
"fd30b54c-a01a-4db5-8556-7ca3605b47d4": {
"main": [
[
{
"node": "cae1c603-11e7-4c83-bac1-008690c56a09",
"type": "main",
"index": 0
}
]
]
},
"2cc1a9bb-8b33-4af5-83ac-5af7906f778b": {
"main": [
[
{
"node": "5d693aa7-79b0-4a19-b7b6-888710743617",
"type": "main",
"index": 0
}
]
]
},
"3766e2ce-7f5f-430a-ac6d-d31c1ef595db": {
"main": [
[
{
"node": "03fb46da-5027-4996-87d1-511b20860f34",
"type": "main",
"index": 0
}
]
]
},
"490c6df0-e206-4673-ad2a-fbb2c50bb5ae": {
"main": [
[
{
"node": "de1ccf48-08d0-4058-964c-c9e940546e42",
"type": "main",
"index": 0
}
]
]
},
"de1ccf48-08d0-4058-964c-c9e940546e42": {
"main": [
[],
[
{
"node": "fd30b54c-a01a-4db5-8556-7ca3605b47d4",
"type": "main",
"index": 0
}
]
]
},
"c7676bae-f6c4-4746-a88f-ed877bb09d83": {
"main": [
[
{
"node": "de1ccf48-08d0-4058-964c-c9e940546e42",
"type": "main",
"index": 0
}
]
]
},
"cae1c603-11e7-4c83-bac1-008690c56a09": {
"main": [
[
{
"node": "25405123-3526-43b6-811e-afafb3796a39",
"type": "main",
"index": 0
}
]
]
},
"ea9be84c-663a-424b-9f82-49a1c0faad63": {
"main": [
[
{
"node": "3766e2ce-7f5f-430a-ac6d-d31c1ef595db",
"type": "main",
"index": 0
}
]
]
},
"03fb46da-5027-4996-87d1-511b20860f34": {
"main": [
[
{
"node": "63f90fba-ffaa-434e-bdd0-b5368f35f0f2",
"type": "main",
"index": 0
}
]
]
},
"5d693aa7-79b0-4a19-b7b6-888710743617": {
"main": [
[
{
"node": "490c6df0-e206-4673-ad2a-fbb2c50bb5ae",
"type": "main",
"index": 0
}
]
]
},
"623feb13-cc50-4d71-964c-e076af7f7987": {
"main": [
[
{
"node": "c7676bae-f6c4-4746-a88f-ed877bb09d83",
"type": "main",
"index": 0
}
]
]
},
"107aee62-4ced-47a6-8063-ac0f0ecc2e49": {
"main": [
[
{
"node": "139536cf-6039-48e7-a41f-21d98171bb33",
"type": "main",
"index": 0
}
]
]
},
"139536cf-6039-48e7-a41f-21d98171bb33": {
"main": [
[
{
"node": "89ac2fe8-a5df-4150-b921-318e641b429c",
"type": "main",
"index": 0
}
]
]
},
"63f90fba-ffaa-434e-bdd0-b5368f35f0f2": {
"main": [
[
{
"node": "1124ab40-bbe3-4202-a16f-61228dbdb728",
"type": "main",
"index": 0
}
]
]
},
"a22810dc-dee3-4e34-8f64-85e4026785fa": {
"main": [
[
{
"node": "de1ccf48-08d0-4058-964c-c9e940546e42",
"type": "main",
"index": 0
}
]
]
},
"198608d6-f63c-41d1-b612-161c208a8514": {
"ai_outputParser": [
[
{
"node": "5d693aa7-79b0-4a19-b7b6-888710743617",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"f48f1abd-b702-451f-8e75-4aabe1e3515f": {
"main": [
[
{
"node": "623feb13-cc50-4d71-964c-e076af7f7987",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Génération de leads, Résumé IA
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Anna Bui
@annabuiplaygroundPartager ce workflow