Modèle de recherche de mots-clés pour les questions d'audience

Avancé

Ceci est unMarket Research, Multimodal AIworkflow d'automatisation du domainecontenant 17 nœuds.Utilise principalement des nœuds comme If, Set, Code, McpClient, GoogleSheets. Workflow de recherche de mots-clés pour l'audience avec OpenAI, Ahrefs et Google Sheets

Prérequis
  • Informations d'identification Google Sheets API
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "5ReWzWNnEuDyt2hZ",
  "meta": {
    "instanceId": "3d4f6f82ad714311bb383a0cddf651da8753530e5575f46d078b9a29d27557e0",
    "templateCredsSetupCompleted": true
  },
  "name": "Audience Problem Keyword Research Template",
  "tags": [],
  "nodes": [
    {
      "id": "4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19",
      "name": "Lors du clic sur 'Exécuter le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -48,
        0
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
      "name": "Données",
      "type": "n8n-nodes-base.set",
      "position": [
        192,
        0
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "6d8b1397-8100-4219-ae03-5477e0da1f0c",
              "name": "customer_profile",
              "type": "string",
              "value": "Mid-30s professional living in a suburban area with a household income of $65,000-80,000. Works in healthcare administration with a stable 9-to-5 schedule and has two school-age children. Values reliability and practicality over flashy features.  Vehicle Needs: Seeks a dependable mid-size sedan or small SUV in the $22,000-32,000 range, preferably 1-3 years old. Prioritizes safety ratings, good gas mileage for the daily 20-mile commute, and enough space for car seats and groceries. Brand loyalty leans toward Honda, Toyota, or Mazda based on reputation for longevity.  Buying Process: Methodical researcher who spends 6-8 weeks comparing options online before visiting dealerships. Reads consumer reviews, checks reliability ratings, and calculates total cost of ownership. Prefers dealerships with transparent pricing and family-friendly service departments. Typically trades in every 6-7 years when repair costs start climbing or family needs change.  This persona represents the backbone of the used car market - practical buyers focused on transportation solutions rather than automotive enthusiasm."
            },
            {
              "id": "1ab9995f-3b6a-407b-8c78-ee2df5079a37",
              "name": "ahref_seo_country",
              "type": "string",
              "value": "us"
            },
            {
              "id": "a7164aa5-6257-4300-a47a-bd79c14de7b1",
              "name": "ahref_search_engine",
              "type": "string",
              "value": "Google"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
      "name": "Mots-clés de départ SEO",
      "type": "@n8n/n8n-nodes-langchain.openAi",
      "position": [
        400,
        0
      ],
      "parameters": {
        "modelId": {
          "__rl": true,
          "mode": "list",
          "value": "o4-mini",
          "cachedResultName": "O4-MINI"
        },
        "options": {},
        "messages": {
          "values": [
            {
              "content": "=Output format:\nA list of 50 keywords in a JSON array called \"keywords\". each keyword in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what they would actually type into Google, Bing, or other search engines. Consider their pain points, goals, research habits, and decision-making process. Think about both their professional research queries and their more casual, exploratory searches.\n\nkeywords should be short matching typical queries in search engines. It should not be elaborative questions and act as keywords to build upon for further keyword research. Do not return navigational keywords.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
            },
            {
              "role": "system",
              "content": "You are a marketing strategist and SEO specialist who works for a fintech marketing agency. You have an MBA in Marketing and many years of experience in keyword research and search behavior analysis, specifically focused on the financial services and investment tools sector.\n\nYour Background:\n- You're analytically-minded and data-obsessed, always looking for patterns in search behavior\n- You have a deep understanding of investor psychology and how financial stress/opportunity drives search queries\n- You've worked with multiple investment platforms, robo-advisors, and financial education companies\n- You're familiar with tools like SEMrush, Ahrefs, Google Keyword Planner, and Answer The Public\n- You understand the seasonal patterns of investment-related searches (earnings seasons, market volatility, tax season)\n\nYour Approach:\n- You think in terms of search intent: informational, navigational, commercial, and transactional queries\n- You consider the customer journey from awareness to consideration to decision\n- You're always thinking about long-tail keywords and semantic search patterns\n- You understand that financial searchers often use specific jargon and technical terms\n- You know that investment-related searches spike during market events and news cycles\n\nYour Personality:\n- Methodical and thorough - you don't just think of obvious keywords\n- Empathetic to user pain points and motivations behind searches\n- Strategic thinker who connects keywords to business outcomes\n- Detail-oriented but also sees the big picture of search landscapes\n- Slightly nerdy about search trends and user behavior data"
            }
          ]
        },
        "jsonOutput": true
      },
      "credentials": {
        "openAiApi": {
          "id": "j4314KXs7eD2lghV",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.8
    },
    {
      "id": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
      "name": "Questions AEO",
      "type": "@n8n/n8n-nodes-langchain.openAi",
      "position": [
        400,
        288
      ],
      "parameters": {
        "modelId": {
          "__rl": true,
          "mode": "list",
          "value": "o4-mini",
          "cachedResultName": "O4-MINI"
        },
        "options": {},
        "messages": {
          "values": [
            {
              "content": "=Output format:\nA list of 50 questions in a JSON array called \"questions\". each question in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what questions they would actually ask ChatGPT, Claude, or Google AI Mode. Consider how they would phrase requests for investment advice, research help, analysis, and decision support. Think about their natural conversation patterns, the context they'd provide, and how they'd iterate on responses. Draw from your deep understanding of search behavior patterns from SEMrush and Ahrefs data to predict conversational AI query evolution.\n\nGenerate question examples - focusing on natural conversational queries, multi-turn interactions, and the specific ways this audience leverages AI for investment research and decision-making, backed by your professional marketing intelligence expertise.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
            },
            {
              "role": "system",
              "content": "You are an Answer Engine Optimization (AEO) specialist and conversational AI researcher who works for a cutting-edge digital marketing consultancy. You have an MBA in Digital Marketing and many years of experience analyzing search behavior across traditional SEO and emerging conversational AI platforms.\n\nYour Background:\n- You're a certified expert in SEMrush, Ahrefs, and other premium marketing intelligence tools \n- You've managed keyword research campaigns with budgets exceeding $500K annually across fintech and investment sectors\n- You understand the nuances of search intent classification (informational, navigational, commercial, transactional) and how this translates to conversational AI queries \n- You've studied thousands of ChatGPT, Claude, and Google AI Mode conversations across various industries, with particular focus on financial services\n- You're an expert in competitive intelligence, using tools like SEMrush's 3+ billion keyword database and Ahrefs' backlink analysis to understand market landscapes \n- You stay current with LLM capabilities and how users adapt their questioning styles accordingly\n\nYour Tool Expertise:\n- Advanced SEMrush user: Keyword Magic Tool, Topic Research, Market Explorer, and Brand Monitoring\n- Ahrefs power user: Keywords Explorer, Content Explorer, and Site Explorer for competitive analysis \n- Proficient with Answer The Public, SpyFu, and emerging AEO-specific tools\n- Experience with Google Search Console, Google Analytics, and Google Ads Keyword Planner integration\n- Understanding of how traditional keyword metrics (search volume, difficulty, CPC) translate to conversational AI query patterns\n\nYour Approach:\n- You think in terms of natural language queries and conversational flows, but with deep understanding of underlying search intent\n- You understand that AI users ask follow-up questions and iterate on their queries, creating conversation threads rather than isolated searches\n- You recognize that people are more verbose and context-heavy when talking to AI vs. search engines, often providing personal financial situations\n- You know users often ask for comparisons, explanations, and step-by-step guidance from LLMs, especially for complex investment decisions\n\nYour Personality:\n- Curious about human-AI interaction patterns and emerging query behaviors in financial services\n- Forward-thinking about how conversational AI is changing information discovery and purchase decisions\n- Analytical but focused on natural language patterns rather than traditional keyword density metrics\n- Empathetic to how users build trust and rapport with AI assistants for financial advice\n- Excited about the shift from \"search\" to \"ask\" mentality, especially in high-stakes financial decisions\n- Data-driven decision maker who validates hypotheses with actual tool data and user behavior analytics"
            }
          ]
        },
        "jsonOutput": true
      },
      "credentials": {
        "openAiApi": {
          "id": "j4314KXs7eD2lghV",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.8
    },
    {
      "id": "cc157702-6c5d-44de-a685-a0f15b547b4f",
      "name": "Ajouter un mot-clé",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1408,
        0
      ],
      "parameters": {
        "columns": {
          "value": {
            "Intent": "={{ $json.intent }}",
            "Keyword": "={{ $json.keyword }}"
          },
          "schema": [
            {
              "id": "Keyword",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Keyword",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Difficulty",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Difficulty",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Volumne",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Volumne",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Intent",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Intent",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "Keyword"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
          "cachedResultName": "Keywords"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
          "cachedResultName": "Example: SEO/AEO Research Workflow"
        },
        "authentication": "serviceAccount"
      },
      "credentials": {
        "googleApi": {
          "id": "CEWCuoGMaP93jgCn",
          "name": "GCP Service account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
      "name": "Ajouter des mots-clés",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2688,
        208
      ],
      "parameters": {
        "columns": {
          "value": {
            "Keyword": "={{ $json.value.keyword }}",
            "Volumne": "={{ $json.value.volume }}",
            "Difficulty": "={{ $json.value.difficulty }}"
          },
          "schema": [
            {
              "id": "Keyword",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Keyword",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Difficulty",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Difficulty",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Volumne",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Volumne",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "Keyword"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
          "cachedResultName": "Keywords"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
          "cachedResultName": "Example: SEO/AEO Research Workflow"
        },
        "authentication": "serviceAccount"
      },
      "credentials": {
        "googleApi": {
          "id": "CEWCuoGMaP93jgCn",
          "name": "GCP Service account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
      "name": "Parse MCP Keywords JSON",
      "type": "n8n-nodes-base.code",
      "onError": "continueErrorOutput",
      "position": [
        1920,
        0
      ],
      "parameters": {
        "jsCode": "// Input: Stringified JSON with escaped characters like \\n, \\\", etc.\nconst inputString = $input.first().json.result.content[0].text\n\n// Parse the string into a real object\nconst parsedJson = JSON.parse(inputString);\n\n// Since parsedJson is an array, we need to map each item to have a json property\nreturn parsedJson.map(item => ({\n  json: item\n}));"
      },
      "typeVersion": 2
    },
    {
      "id": "9446c8c2-834b-46b0-af10-527f8dd6929a",
      "name": "Boucle sur les mots-clés IA",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1120,
        0
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "62114aa9-c062-451d-b757-7b3af04b11dd",
      "name": "Générateur de mots-clés associés",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        1664,
        0
      ],
      "parameters": {
        "toolName": "keyword_generator",
        "operation": "executeTool",
        "toolParameters": "={\n  \"keyword\": \"{{ $json.Keyword }}\",\n  \"country\": \"{{ $('Data').item.json.ahref_seo_country }}\",\n  \"search_engine\": \"{{ $('Data').item.json.ahref_search_engine }}\"\n}"
      },
      "credentials": {
        "mcpClientApi": {
          "id": "IHt3R0V5d8rgP6MK",
          "name": "SEO-MCP Client (STDIO)"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
      "name": "Boucle sur les valeurs de retour SEO",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        2192,
        0
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
      "name": "Si",
      "type": "n8n-nodes-base.if",
      "position": [
        2400,
        16
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "92f74515-5438-47a9-bd78-5138339d92d8",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.label }}",
              "rightValue": ""
            },
            {
              "id": "e56e30d7-dfb8-464c-8ebf-7388f17a05cf",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $json.label }}",
              "rightValue": "\"question ideas\""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
      "name": "Parse Keyword JSON",
      "type": "n8n-nodes-base.code",
      "position": [
        832,
        0
      ],
      "parameters": {
        "jsCode": "return $input.first().json.message.content.keywords"
      },
      "typeVersion": 2
    },
    {
      "id": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
      "name": "Parse Question JSON",
      "type": "n8n-nodes-base.code",
      "position": [
        832,
        288
      ],
      "parameters": {
        "jsCode": "return $input.first().json.message.content.questions"
      },
      "typeVersion": 2
    },
    {
      "id": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
      "name": "Boucle sur les questions IA",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1120,
        288
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
      "name": "Ajouter une question IA",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1408,
        288
      ],
      "parameters": {
        "columns": {
          "value": {
            "Intent": "={{ $json.intent }}",
            "Question": "={{ $json.question }}"
          },
          "schema": [
            {
              "id": "Question",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Question",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Intent",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Intent",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "Question"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 1575118832,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
          "cachedResultName": "Questions"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
          "cachedResultName": "Example: SEO/AEO Research Workflow"
        },
        "authentication": "serviceAccount"
      },
      "credentials": {
        "googleApi": {
          "id": "CEWCuoGMaP93jgCn",
          "name": "GCP Service account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
      "name": "Ajouter une question de recherche SEO",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2688,
        0
      ],
      "parameters": {
        "columns": {
          "value": {
            "Keyword": "={{ $json.value.keyword }}",
            "Volumne": "={{ $json.value.volume }}",
            "Difficulty": "={{ $json.value.difficulty }}"
          },
          "schema": [
            {
              "id": "Keyword",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Keyword",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Difficulty",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Difficulty",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Volumne",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Volumne",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "Keyword"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 1575118832,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
          "cachedResultName": "Questions"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
          "cachedResultName": "Example: SEO/AEO Research Workflow"
        },
        "authentication": "serviceAccount"
      },
      "credentials": {
        "googleApi": {
          "id": "CEWCuoGMaP93jgCn",
          "name": "GCP Service account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "3d938281-0ed9-4e31-a93c-92ae9349a1dd",
      "name": "Note adhésive7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -640,
        -224
      ],
      "parameters": {
        "width": 460,
        "height": 816,
        "content": "## Audience Problem Keyword Research Workflow\n### This n8n template generates relevant keywords and questions from a a customer profile. Keyword data is enriched from ahref and everything is stored in a Google Sheet. This is great for market and customer research. Understanding search intent for a well defined audience and gives relevant actionable data in a fraction of time that manual research takes.\n\n### How it works\n* We'll define a customer profile in the 'Data' node\n* We use an OpenAI LLM to fetch relevant search intent as keywords and questions\n* We use an SEO MCP server to fetch keyword data from ahref free tooling\n* The fetched data is stored in the Google sheet\n\n### How to use\n* Make a copy of [this](https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=sharing) Google Sheet and add it in all Google Sheet nodes\n* Make sure that n8n has read & write permissions for your Google sheet. For my self-hosted n8n instance I was using a [Google Service Account](https://docs.n8n.io/integrations/builtin/credentials/google/service-account/)\n* Add your OpenAI account ([API Key](https://docs.n8n.io/integrations/builtin/credentials/openai/#using-api-key)) in the LLM nodes\n* Add your customer profile in the 'Data' node\n* Add MCP credentials for [seo-mcp](https://github.com/cnych/seo-mcp). Make sure you set the environments correctly:\n```json\n\"command\": \"uvx\",\n\"args\": [\"--python\", \"3.10\", \"seo-mcp\"],\n\"env\": {\n  \"CAPSOLVER_API_KEY\": \"CAP-xxxxxx\"\n}\n```\n* Execute workflow :)\n\n### Requirements\n* CapSolver account and API key ([register here](https://dashboard.capsolver.com/passport/register?inviteCode=p-4Y_DjQymvt)) to use [seo-mcp](https://github.com/cnych/seo-mcp)\n* Google Drive account"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "b06b735c-be0f-4a40-b25d-538522244754",
  "connections": {
    "7ef6f3a6-4659-4538-a223-3d600f3e2555": {
      "main": [
        [
          {
            "node": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d6cf369d-37cf-4e5a-b518-54bb1517d693": {
      "main": [
        [
          {
            "node": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
            "type": "main",
            "index": 0
          },
          {
            "node": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cc157702-6c5d-44de-a685-a0f15b547b4f": {
      "main": [
        [
          {
            "node": "62114aa9-c062-451d-b757-7b3af04b11dd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "2aed19ed-e868-4d3e-b507-6b364e4fe258": {
      "main": [
        [
          {
            "node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3eeff8fd-9c13-45ea-8d49-eff7557352fc": {
      "main": [
        [
          {
            "node": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3c3b6190-6ba7-4adf-bd3b-989242ba9d16": {
      "main": [
        [
          {
            "node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "491a9c60-95ae-4448-8d46-0ae34c8dcf5d": {
      "main": [
        [
          {
            "node": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e7ef3174-8d5f-4dfb-bedf-cb07412da781": {
      "main": [
        [
          {
            "node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f2a802f8-00d7-46c5-b273-04a1147ae6f7": {
      "main": [
        [
          {
            "node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9446c8c2-834b-46b0-af10-527f8dd6929a": {
      "main": [
        [],
        [
          {
            "node": "cc157702-6c5d-44de-a685-a0f15b547b4f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "2f16fbaf-1bb2-40de-ab86-9a7b7644668a": {
      "main": [
        [],
        [
          {
            "node": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ff8aae43-e5d5-4569-a3e0-8c79cb168919": {
      "main": [
        [
          {
            "node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1da1245c-1a6d-4920-9535-f03a8b5fa309": {
      "main": [
        [
          {
            "node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "62114aa9-c062-451d-b757-7b3af04b11dd": {
      "main": [
        [
          {
            "node": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6dfbea3b-6f8c-4889-b455-9ff106870d6f": {
      "main": [
        [
          {
            "node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19": {
      "main": [
        [
          {
            "node": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Étude de marché, IA Multimodale

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds17
Catégorie2
Types de nœuds9
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34