Vérification automatisée de la conformité des documents

Avancé

Ceci est unAI RAG, Multimodal AIworkflow d'automatisation du domainecontenant 22 nœuds.Utilise principalement des nœuds comme Code, Webhook, HttpRequest, Code, Agent. Vérification automatisée de la conformité des documents avec une combinaison d'IA et de base de données vectorielle

Prérequis
  • Point de terminaison HTTP Webhook (généré automatiquement par n8n)
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Informations de connexion au serveur Qdrant
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "3fe077479b444bdcfece7286c569713d43d4aa028a4ec663ca89692157527a79",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "22c5f212-aeca-46d1-a684-41147efc6547",
      "name": "Téléversement du Document d'Audit",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -464,
        -272
      ],
      "webhookId": "ede6ddb4-91a5-4a3c-9f91-5600939bf5a8",
      "parameters": {
        "path": "creatorhub/audit-document-upload",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "lastNode"
      },
      "typeVersion": 2
    },
    {
      "id": "bf8f5941-db69-4db3-b344-183e23b010ca",
      "name": "Soumission de la Procédure",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -464,
        288
      ],
      "webhookId": "9bbf9e5b-1582-40c2-9324-6927f62ca31d",
      "parameters": {
        "path": "creatorhub/procedure-validate",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 2
    },
    {
      "id": "35b34dc7-27f0-446d-b052-1bf7eb990ce2",
      "name": "Récupérer le Document (Microsoft Graph)",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -256,
        -272
      ],
      "parameters": {
        "url": "={{$env.GRAPH_BASE_URL || \"https://graph.microsoft.com\"}}/v1.0/drives/{{$json.body.spDriveId}}/items/{{$json.body.spDocumentId}}/content",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "a9520145-7f98-4f22-a477-cb24caa599b2",
      "name": "Supprimer les Anciens Vecteurs de Documents",
      "type": "@n8n/n8n-nodes-langchain.code",
      "position": [
        0,
        -272
      ],
      "parameters": {
        "code": {
          "execute": {
            "code": "const { QdrantVectorStore } = require(\"@langchain/qdrant\");\nconst { OllamaEmbeddings } = require(\"@langchain/community/embeddings/ollama\");\n\nconst OLLAMA_BASE_URL = $env.OLLAMA_BASE_URL || \"http://localhost:11434\";\nconst QDRANT_BASE_URL = $env.QDRANT_BASE_URL || \"http://localhost:6333\";\nconst QDRANT_COLLECTION = $env.QDRANT_COLLECTION || \"audit-docs\";\nconst EMBED_MODEL = $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text\";\n\nconst embeddings = new OllamaEmbeddings({ model: EMBED_MODEL, baseUrl: OLLAMA_BASE_URL });\nconst vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, { url: QDRANT_BASE_URL, collectionName: QDRANT_COLLECTION });\n\nconst items = this.getInputData();\nconst fileIdToDelete = items[0].json.body.spDocumentId;\n\nconst filter = { must: [ { key: \"metadata.file_id\", match: { value: fileIdToDelete } } ] };\n\ntry {\n  if (vectorStore?.client?.delete) {\n    await vectorStore.client.delete(QDRANT_COLLECTION, { filter });\n  }\n} catch (e) {\n  // Non-fatal: continue import/index even if delete fails\n  this.logger?.warn?.(`Qdrant delete skipped/failed: ${e?.message || e}`);\n}\n\nreturn items.map(item => ({ json: { ...item.json, file_id: fileIdToDelete }, binary: item.binary }));"
          }
        },
        "inputs": {
          "input": [
            {
              "type": "main",
              "required": true
            }
          ]
        },
        "outputs": {
          "output": [
            {
              "type": "main"
            }
          ]
        }
      },
      "typeVersion": 1,
      "alwaysOutputData": false
    },
    {
      "id": "a0be08c7-54b0-41ad-9b8a-326601c0e6b8",
      "name": "Extraire le Texte PDF",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        416,
        -272
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "=data"
      },
      "executeOnce": true,
      "typeVersion": 1,
      "alwaysOutputData": true
    },
    {
      "id": "c8a629c8-80d6-484f-ade6-e3a969c1a353",
      "name": "Générer les Embeddings de Document",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
      "position": [
        560,
        -80
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text:latest\" }}"
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
      "name": "Insérer les Vecteurs dans Qdrant",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        656,
        -272
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "={{ $env.QDRANT_COLLECTION || \"audit-docs\" }}",
          "cachedResultName": "audit-docs"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "efX2OG1ibQmRYvUA",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "250e006a-d815-475e-a0f6-daa88c0b2a71",
      "name": "Charger les Métadonnées du Document",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        768,
        -96
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "documentId",
                "value": "={{ $('Delete Old Document Vectors').item.json.body.spDocumentId }}"
              },
              {
                "name": "documentName",
                "value": "={{ $('Delete Old Document Vectors').item.json.body.fileName }}"
              }
            ]
          }
        },
        "textSplittingMode": "custom"
      },
      "typeVersion": 1.1
    },
    {
      "id": "53151c0a-7fbe-4a35-a9a9-9d082842f05f",
      "name": "Découper le Texte en Segments",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        880,
        48
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 10
      },
      "typeVersion": 1
    },
    {
      "id": "1970eb10-01aa-4108-b686-47e6fa955cf8",
      "name": "Formater la Charge Utile de Procédure",
      "type": "n8n-nodes-base.code",
      "position": [
        -224,
        288
      ],
      "parameters": {
        "jsCode": "const {procedures, spDocumentId, description} = $input.first().json.body;\nconst result = procedures.map(procedure => ({ json: { spDocumentId, procedure, description } }));\nreturn result;"
      },
      "typeVersion": 2
    },
    {
      "id": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
      "name": "Validateur de Conformité par IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        112,
        288
      ],
      "parameters": {
        "text": "=# Role\nYou are an expert internal auditor with extensive experience in compliance analysis, document review, and gap identification. Your analytical skills, attention to detail, and ability to extract relevant information from complex documents are unmatched in the industry.\n\n# Inputs\n\n**Procedure**\n{{ $json.procedure }}\n \n**spDocumentId**\n{{ $json.spDocumentId }}\n \n**description**\n{{ $json.description }}\n\n# Task\nAnalyze the provided procedure and related documents by following these steps:\n\n1. Carefully review the procedure and description text to understand all requirements and compliance standards.\n2. With the spDocumentId passed in, generate effective search queries based on key requirements in the procedure.\n3. Use these queries to retrieve relevant text from the Qdrant datastore that relates to compliance requirements.\n4. Systematically analyze the retrieved documents to:\n   - Identify sections that meet the procedure's requirements\n   - Identify gaps where requirements are not met\n   - Document specific citations for both compliant and non-compliant findings\n5. Organize your findings into a structured JSON response with clear summaries and supporting evidence.\n6. Assign an appropriate confidence level to your analysis based on the quality and relevance of the evidence found.\n\n# Specifics\n- This compliance analysis is critically important to our organization's regulatory standing, and your thorough evaluation will directly impact our business operations.\n- When generating search queries, focus on specific requirements, standards, and action items mentioned in the procedure.\n- For each compliance or non-compliance finding, provide specific text citations including page numbers or section references.\n- Your expertise in identifying subtle compliance gaps is greatly valued and will help protect our organization from potential regulatory issues.\n- If certain requirements have no corresponding evidence in the documents, clearly indicate this as a gap in the non-compliance summary.\n- Ensure your confidence level accurately reflects the strength of evidence found in the documents.\n\n# Context\nYou are conducting an internal audit for a regulated organization that must demonstrate compliance with specific procedures. The Qdrant vector datastore contains the full text of all relevant documents that need to be evaluated against the procedure requirements. Your analysis will be used by compliance officers and management to address any gaps and prepare for potential external audits. The procedure document contains the standards against which all other documents must be measured, and your task is to determine whether these standards are being met based on the evidence in the documents.\n\n# Examples\n## Example 1\nQ:\n{\n  \"output\": {\n    \"procedure\": \"Analyze financial and operational highlights, identify key issues, and develop strategic recommendations.\",\n    \"spDocumentId\": \"SP123456\",\n    \"confidenceLevel\": 40,\n    \"summaryOfCompliance\": \"The meeting transcript provided detailed insights into Apollo's financial performance and operational strategies. The summary of compliance includes a thorough analysis of sales trends, pricing adjustments, R&D projects, cost-saving measures, marketing efforts, and legal considerations.\",\n    \"summaryOfNonCompliance\": \"There are no specific non-compliances noted in the provided transcript; however, potential risks such as market research gaps, cost-cutting strategies impacting innovation, and pending litigation pose challenges that need to be addressed.\",\n    \"supportingTextCitations\": \"Based on the meeting transcript, key financial highlights include decreased sales of premium shoes, increased product prices by approximately 10%, cessation of the Phoneshoe project, labor reallocation, reduced postage and phone expenses, Superbowl commercial costs increase, and pending litigation.\"\n  }\n}\n\n## Example 2\nQ:\n[\n  {\n    \"output\": {\n      \"procedure\": \"Implement all recommendations from Charter for Corporate Responsibility in Environmental Protection (CREP) related to cement plants.\",\n      \"spDocumentId\": \"SP-DOC-00123\",\n      \"confidenceLevel\": 40,\n      \"summaryOfCompliance\": \"All commitments made during the Public Hearing on July 18, 2012, will be satisfactorily implemented. A separate budget has been allocated for this purpose and progress reports will be submitted to the Ministry's Regional Office in Bangalore.\",\n      \"summaryOfNonCompliance\": \"None were found.\",\n      \"supportingTextCitations\": \"citation on page 3\"\n    }\n  }\n]\n\n# Notes\n- Return only a structured JSON response matching the required schema.\n- If any fields would be empty, provide \"No Additional Feedback\" as the value.\n- Place special emphasis on the accuracy of citations to ensure traceability of your findings.\n- Ensure your confidence level (0-100) accurately reflects the quality and completeness of evidence found.\n- Remember that both compliance and non-compliance findings are equally important for a comprehensive audit.",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "executeOnce": false,
      "typeVersion": 2.1
    },
    {
      "id": "d2cef8a0-0e15-4e06-9c5c-3eae0aa2fc93",
      "name": "Modèle de Langage (Agent IA)",
      "type": "@n8n/n8n-nodes-langchain.lmChatOllama",
      "position": [
        16,
        496
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_CHAT_MODEL || \"qwen2.5:7b\" }}",
        "options": {
          "numCtx": 2048
        }
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "26ff7b08-8fd3-4ea6-baee-ca215382cffb",
      "name": "Récupérer les Segments de Document Pertinents",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        192,
        496
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "topK": 8,
        "options": {
          "searchFilterJson": "={\n  \"should\": [\n    {\n      \"key\": \"metadata.documentId\",\n      \"match\": { \"value\": \"{{ $('Format Procedure Payload').first().json.spDocumentId }}\" }\n    }\n  ]\n}"
        },
        "toolDescription": "Query document text from uploaded documents.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "={{ $env.QDRANT_COLLECTION || \"audit-docs\" }}",
          "cachedResultName": "audit-docs"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "efX2OG1ibQmRYvUA",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "b5f941e6-699f-4146-9ac5-98881a6e350c",
      "name": "Générer les Embeddings de Requête",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
      "position": [
        256,
        640
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text:latest\" }}"
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0f05420f-46ff-4388-9ac4-1873769b27fa",
      "name": "Modèle de Langage (Sortie Structurée)",
      "type": "@n8n/n8n-nodes-langchain.lmChatOllama",
      "position": [
        560,
        640
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_CHAT_MODEL || \"qwen2.5:7b\" }}",
        "options": {}
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9",
      "name": "Analyser la Réponse de l'IA",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        496,
        496
      ],
      "parameters": {
        "autoFix": true,
        "schemaType": "manual",
        "inputSchema": "{\n  \"type\": \"object\",\n  \"required\": [\"confidenceLevel\",\"summaryOfCompliance\",\"summaryOfNonCompliance\",\"supportingTextCitations\"],\n  \"properties\": {\n    \"procedure\": {\"type\": \"string\"},\n    \"spDocumentId\": {\"type\": \"string\"},\n    \"confidenceLevel\": {\"type\": \"integer\"},\n    \"summaryOfCompliance\": {\"type\": \"string\"},\n    \"summaryOfNonCompliance\": {\"type\": \"string\"},\n    \"supportingTextCitations\": {\"type\": \"string\"}\n  }\n}"
      },
      "typeVersion": 1.3
    },
    {
      "id": "d67b5769-ef38-4e94-b0eb-9052c43dd113",
      "name": "Retourner le Rapport de Conformité",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        608,
        288
      ],
      "parameters": {
        "options": {},
        "respondWith": "allIncomingItems"
      },
      "typeVersion": 1.4
    },
    {
      "id": "a07e2a08-6304-4abf-81b0-d2ab0ae90c5d",
      "name": "Note Adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -464,
        -480
      ],
      "parameters": {
        "content": "### 1. Start: Upload Document\n* Via Webhook: Audit Document Upload\n* Accepts PDF/DOCX file\n* Optionally fetches from Microsoft Graph"
      },
      "typeVersion": 1
    },
    {
      "id": "5bfb1299-0b6b-4c45-abce-f2c725c22581",
      "name": "Note Adhésive1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -16,
        -480
      ],
      "parameters": {
        "content": "### 2. Document Preprocessing\n* Clear Old Vectors (remove previous embeddings for same file)\n* Extract PDF Text\n* Split into chunks for embedding\n* Generate embeddings → Insert into Qdrant"
      },
      "typeVersion": 1
    },
    {
      "id": "3b49fd17-f85d-4ad4-9ad3-e8274faf9fef",
      "name": "Note Adhésive2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -464,
        80
      ],
      "parameters": {
        "content": "### 3. Procedure Submission\n* Webhook: Procedure Submission\n* Accepts JSON payload (procedure, description, spDocumentId)\n* Payload formatted → passed to AI"
      },
      "typeVersion": 1
    },
    {
      "id": "cb5b5349-47d3-4c01-ac2a-ea7a9b596503",
      "name": "Note Adhésive3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        96,
        80
      ],
      "parameters": {
        "content": "### 4. AI Compliance Validation\n* Retrieve Relevant Document Chunks from Qdrant\n* AI Compliance Validator uses LLM + embeddings\n* Output parsed & structured into JSON"
      },
      "typeVersion": 1
    },
    {
      "id": "d6b8d7c6-d14d-4625-97de-ac6fdd792156",
      "name": "Note Adhésive4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        576,
        80
      ],
      "parameters": {
        "content": "### 5. Return Results\n* Structured compliance report returned to webhook caller"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "a0be08c7-54b0-41ad-9b8a-326601c0e6b8": {
      "main": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9": {
      "ai_outputParser": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "bf8f5941-db69-4db3-b344-183e23b010ca": {
      "main": [
        [
          {
            "node": "1970eb10-01aa-4108-b686-47e6fa955cf8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "22c5f212-aeca-46d1-a684-41147efc6547": {
      "main": [
        [
          {
            "node": "35b34dc7-27f0-446d-b052-1bf7eb990ce2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "250e006a-d815-475e-a0f6-daa88c0b2a71": {
      "ai_document": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "53151c0a-7fbe-4a35-a9a9-9d082842f05f": {
      "ai_textSplitter": [
        [
          {
            "node": "250e006a-d815-475e-a0f6-daa88c0b2a71",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa": {
      "main": [
        [
          {
            "node": "d67b5769-ef38-4e94-b0eb-9052c43dd113",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1970eb10-01aa-4108-b686-47e6fa955cf8": {
      "main": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b5f941e6-699f-4146-9ac5-98881a6e350c": {
      "ai_embedding": [
        [
          {
            "node": "26ff7b08-8fd3-4ea6-baee-ca215382cffb",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "d2cef8a0-0e15-4e06-9c5c-3eae0aa2fc93": {
      "ai_languageModel": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a9520145-7f98-4f22-a477-cb24caa599b2": {
      "main": [
        [
          {
            "node": "a0be08c7-54b0-41ad-9b8a-326601c0e6b8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c8a629c8-80d6-484f-ade6-e3a969c1a353": {
      "ai_embedding": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "35b34dc7-27f0-446d-b052-1bf7eb990ce2": {
      "main": [
        [
          {
            "node": "a9520145-7f98-4f22-a477-cb24caa599b2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26ff7b08-8fd3-4ea6-baee-ca215382cffb": {
      "ai_tool": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "0f05420f-46ff-4388-9ac4-1873769b27fa": {
      "ai_languageModel": [
        [
          {
            "node": "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - RAG IA, IA Multimodale

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds22
Catégorie2
Types de nœuds14
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34