Modèle de newsletter par e-mail MCP
Ceci est unAI Chatbot, Multimodal AIworkflow d'automatisation du domainecontenant 18 nœuds.Utilise principalement des nœuds comme GmailTool, PerplexityTool, Agent, McpTrigger, TavilyTool. Assistant de rédaction de courriels et de recherche d'actualités - Intégration d'OpenAI, Gmail, Tavily et Perplexity
- •Compte Google et informations d'identification Gmail API
- •Clé API OpenAI
Nœuds utilisés (18)
Catégorie
{
"id": "TgpCq3JAieEaFdGJ",
"meta": {
"templateCredsSetupCompleted": true
},
"name": "Email News MCP Template",
"tags": [],
"nodes": [
{
"id": "0606f766-255e-469c-8e6c-5751537ed3ab",
"name": "Agent IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
192,
-160
],
"parameters": {
"options": {
"systemMessage": "You are a helpful email assistant.\n\n##Tool\nUse attached Email MCP Tool for emails when asked\n\nUse attached Email MCP Tool for "
}
},
"typeVersion": 2.2
},
{
"id": "225b0350-6eae-45fc-a158-da9961b8aafe",
"name": "À la réception d'un message de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
0,
-160
],
"parameters": {
"options": {}
},
"typeVersion": 1.3
},
{
"id": "80fcfcad-1310-4cf2-a4df-bf6746339cfd",
"name": "Modèle de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
48,
48
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1-mini"
},
"options": {}
},
"typeVersion": 1.2
},
{
"id": "7e3db391-7ede-4e92-9593-7a1288938d80",
"name": "Mémoire simple",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
224,
48
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "1b9a577c-3401-4081-be39-d5051922df38",
"name": "Envoyer un message dans Gmail",
"type": "n8n-nodes-base.gmailTool",
"position": [
-144,
480
],
"parameters": {
"sendTo": "<<<REPLACE_WITH_EMAIL>>>",
"message": "<<<REPLACE_WITH_MESSAGE>>>",
"options": {},
"subject": "<<<REPLACE_WITH_SUBJECT>>>"
},
"typeVersion": 2.1
},
{
"id": "fa6ae7d8-3d4d-4bd0-a4f9-d1d295f5f14b",
"name": "Envoyer un message dans Gmail1",
"type": "n8n-nodes-base.gmailTool",
"position": [
64,
480
],
"parameters": {
"sendTo": "<<<REPLACE_WITH_EMAIL>>>",
"message": "<<<REPLACE_WITH_MESSAGE>>>",
"options": {},
"subject": "<<<REPLACE_WITH_SUBJECT>>>"
},
"typeVersion": 2.1
},
{
"id": "252988a9-b546-4e1a-9d6f-338618b5781b",
"name": "Envoyer un message dans Gmail2",
"type": "n8n-nodes-base.gmailTool",
"position": [
256,
480
],
"parameters": {
"sendTo": "<<<REPLACE_WITH_EMAIL>>>",
"message": "<<<REPLACE_WITH_MESSAGE>>>",
"options": {},
"subject": "<<<REPLACE_WITH_SUBJECT>>>"
},
"typeVersion": 2.1
},
{
"id": "722718e7-8a84-44b4-98e3-a6eb53902a7c",
"name": "Rechercher dans Tavily",
"type": "@tavily/n8n-nodes-tavily.tavilyTool",
"position": [
512,
480
],
"parameters": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Query', ``, 'string') }}",
"options": {}
},
"typeVersion": 1
},
{
"id": "0bba3a97-e1ee-46f5-abec-7713d6ff2948",
"name": "Envoyer un message à un modèle dans Perplexity",
"type": "n8n-nodes-base.perplexityTool",
"position": [
688,
480
],
"parameters": {
"options": {},
"messages": {
"message": [
{
"content": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('message0_Text', ``, 'string') }}"
}
]
},
"simplify": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Simplify_Output', ``, 'boolean') }}",
"requestOptions": {}
},
"typeVersion": 1
},
{
"id": "60b275c9-9e2f-4e3c-bc11-2477fe0bc951",
"name": "Serveur MCP Actualités",
"type": "@n8n/n8n-nodes-langchain.mcpTrigger",
"position": [
544,
256
],
"parameters": {
"path": "<<<REPLACE_WITH_PATH>>>"
},
"typeVersion": 2
},
{
"id": "946b0a9d-590f-4633-ac98-ce983bbb205f",
"name": "Serveur MCP E-mail",
"type": "@n8n/n8n-nodes-langchain.mcpTrigger",
"position": [
-96,
256
],
"parameters": {
"path": "<<<REPLACE_WITH_PATH>>>"
},
"typeVersion": 2
},
{
"id": "34bff09d-95d1-446f-88cb-1c664d1ad754",
"name": "Client MCP E-mail",
"type": "@n8n/n8n-nodes-langchain.mcpClientTool",
"position": [
544,
48
],
"parameters": {
"endpointUrl": "<<<REPLACE_WITH_ENDPOINT_URL>>>",
"serverTransport": "httpStreamable"
},
"typeVersion": 1.1
},
{
"id": "57587695-df6b-461d-8596-6561ce295f79",
"name": "Client MCP Actualités",
"type": "@n8n/n8n-nodes-langchain.mcpClientTool",
"position": [
384,
48
],
"parameters": {
"endpointUrl": "<<<REPLACE_WITH_ENDPOINT_URL>>>",
"serverTransport": "httpStreamable"
},
"typeVersion": 1.1
},
{
"id": "2e931983-39af-4b1d-9a16-e30cd536ff0b",
"name": "Rechercher dans Tavily1",
"type": "@tavily/n8n-nodes-tavily.tavilyTool",
"position": [
848,
480
],
"parameters": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Query', ``, 'string') }}",
"options": {}
},
"typeVersion": 1
},
{
"id": "c8fc2868-c029-454f-b47c-6cf2a4f2fb7c",
"name": "Note autocollante",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1024,
-432
],
"parameters": {
"width": 736,
"height": 1808,
"content": "AI Agent MCP for Email & News Research \n\nBuild a chat-first MCP-powered research and outreach agent. This workflow lets you ask questions in an n8n chat, then the agent researches news (via Tavily + Perplexity through an MCP server) and drafts emails (via Gmail through a separate MCP server). It uses OpenAI for reasoning and short-term memory for coherent, multi‑turn conversations.\n\nWatch build along videos for workflows like these on: www.youtube.com/@automatewithmarc\n\nWhat this template does\n\nChat-native trigger: Start a conversation and ask for research or an email draft.\n\nMCP client tools: The agent talks to two MCP servers — one for Email work, one for News research.\n\nNews research stack: Uses Tavily (search) and Perplexity (LLM retrieval/answers) behind a News MCP server.\n\nEmail stack: Uses Gmail Tool to generate and send messages via an Email MCP server.\n\nReasoning + memory: OpenAI Chat Model + Simple Memory for context-aware, multi-step outputs.\n\nHow it works (node map)\n\nWhen chat message received → collects your prompt and routes it to the agent.\n\nAI Agent (system prompt = “helpful email assistant”) → orchestrates tools via MCP Clients.\n\nOpenAI Chat Model → reasoning/planning for research or email drafting.\n\nSimple Memory → keeps recent chat context for follow-ups.\n\nNews MCP Server exposes:\n\nTavily Tool (Search) and Perplexity Tool (Ask) for up-to-date findings.\n\nEmail MCP Server exposes:\n\nGmail Tool (To, Subject, Message via AI fields) to send or draft emails.\n\nThe MCP Clients (News/Email) plug into the Agent, so your single chat prompt can research and then draft/send emails in one flow.\n\nRequirements\n\nn8n (Cloud or self‑hosted)\n\nOpenAI API key for the Chat Model (set on the node)\n\nTavily, Perplexity, and Gmail credentials (connected on their respective tool nodes)\n\nPublicly reachable MCP Server endpoints (provided in the MCP Client nodes)\n\nSetup (quick start)\n\nImport the template and open it in the editor.\n\nConnect credentials on: OpenAI, Tavily, Perplexity, and Gmail tool nodes.\n\nConfirm MCP endpoints in both MCP Client nodes (News/Email) and leave transport as httpStreamable unless you have special requirements.\n\nRun the workflow. In chat, try:\n\n“Find today’s top stories on Kubernetes security and draft an intro email to Acme.”\n\n“Summarize the latest AI infra trends and email a 3‑bullet update to my team.”\n\nInputs & outputs\n\nInput: Natural-language prompt via chat trigger.\n\nTools used: News MCP (Tavily + Perplexity), Email MCP (Gmail).\n\nOutput: A researched summary and/or a drafted/sent email, returned in the chat and executed via Gmail when requested.\n\nWhy teams will love it\n\nOne prompt → research + outreach: No tab‑hopping between tools.\n\nUp-to-date answers: Pulls current info through Tavily/Perplexity.\n\nEmail finalization: Converts findings into send-ready drafts via Gmail.\n\nContext-aware: Memory keeps threads coherent across follow-ups.\n\nPro tips\n\nUse clear verbs in your prompt: “Research X, then email Y with Z takeaways.”\n\nFor safer runs, point Gmail to a test inbox first (or disable send and only draft).\n\nAdd guardrails in the Agent’s system message to match your voice/tone."
},
"typeVersion": 1
},
{
"id": "226bc7c3-d026-4dea-adec-1d8fc5a5481b",
"name": "Note autocollante1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-144,
-304
],
"parameters": {
"color": 5,
"width": 928,
"height": 512,
"content": "Agent & MCP Client"
},
"typeVersion": 1
},
{
"id": "4d9280da-af9b-4eab-be1a-9c25a6258022",
"name": "Note autocollante2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-256,
224
],
"parameters": {
"color": 6,
"width": 672,
"height": 512,
"content": "Email MCP Server"
},
"typeVersion": 1
},
{
"id": "f55f5515-090b-4c3d-9e60-49e0588292a4",
"name": "Note autocollante3",
"type": "n8n-nodes-base.stickyNote",
"position": [
432,
224
],
"parameters": {
"color": 7,
"width": 672,
"height": 512,
"content": "News Research MCP Server"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"connections": {
"7e3db391-7ede-4e92-9593-7a1288938d80": {
"ai_memory": [
[
{
"node": "0606f766-255e-469c-8e6c-5751537ed3ab",
"type": "ai_memory",
"index": 0
}
]
]
},
"57587695-df6b-461d-8596-6561ce295f79": {
"ai_tool": [
[
{
"node": "0606f766-255e-469c-8e6c-5751537ed3ab",
"type": "ai_tool",
"index": 0
}
]
]
},
"34bff09d-95d1-446f-88cb-1c664d1ad754": {
"ai_tool": [
[
{
"node": "0606f766-255e-469c-8e6c-5751537ed3ab",
"type": "ai_tool",
"index": 0
}
]
]
},
"722718e7-8a84-44b4-98e3-a6eb53902a7c": {
"ai_tool": [
[
{
"node": "60b275c9-9e2f-4e3c-bc11-2477fe0bc951",
"type": "ai_tool",
"index": 0
}
]
]
},
"80fcfcad-1310-4cf2-a4df-bf6746339cfd": {
"ai_languageModel": [
[
{
"node": "0606f766-255e-469c-8e6c-5751537ed3ab",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"2e931983-39af-4b1d-9a16-e30cd536ff0b": {
"ai_tool": [
[
{
"node": "60b275c9-9e2f-4e3c-bc11-2477fe0bc951",
"type": "ai_tool",
"index": 0
}
]
]
},
"1b9a577c-3401-4081-be39-d5051922df38": {
"ai_tool": [
[
{
"node": "946b0a9d-590f-4633-ac98-ce983bbb205f",
"type": "ai_tool",
"index": 0
}
]
]
},
"fa6ae7d8-3d4d-4bd0-a4f9-d1d295f5f14b": {
"ai_tool": [
[
{
"node": "946b0a9d-590f-4633-ac98-ce983bbb205f",
"type": "ai_tool",
"index": 0
}
]
]
},
"252988a9-b546-4e1a-9d6f-338618b5781b": {
"ai_tool": [
[
{
"node": "946b0a9d-590f-4633-ac98-ce983bbb205f",
"type": "ai_tool",
"index": 0
}
]
]
},
"225b0350-6eae-45fc-a158-da9961b8aafe": {
"main": [
[
{
"node": "0606f766-255e-469c-8e6c-5751537ed3ab",
"type": "main",
"index": 0
}
]
]
},
"0bba3a97-e1ee-46f5-abec-7713d6ff2948": {
"ai_tool": [
[
{
"node": "60b275c9-9e2f-4e3c-bc11-2477fe0bc951",
"type": "ai_tool",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Chatbot IA, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Automate With Marc
@marconiAutomating Start-Up and Business processes. Helping non-techies understand and leverage Agentic AI with easy to understand step-by-step tutorials. Check out my educational content: https://www.youtube.com/@Automatewithmarc
Partager ce workflow