Rechercheur de réseau IA dynamique : du texte brut au CSV personnalisé

Avancé

Ceci est unMiscellaneous, AI Summarization, Multimodal AIworkflow d'automatisation du domainecontenant 16 nœuds.Utilise principalement des nœuds comme Set, Code, SplitOut, FormTrigger, HttpRequest. Chercheur de réseau AI dynamique utilisant GPT-4 et Linkup pour convertir du texte brut en CSV personnalisé

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "nodes": [
    {
      "id": "7df78b4d-8c66-4353-a87e-7b151913f856",
      "name": "À la soumission du formulaire",
      "type": "n8n-nodes-base.formTrigger",
      "position": [
        0,
        16
      ],
      "webhookId": "0d4374b6-84a6-4a71-834b-40dd3d3e3adf",
      "parameters": {
        "options": {},
        "formTitle": "New research",
        "formFields": {
          "values": [
            {
              "fieldType": "textarea",
              "fieldLabel": "Describe your research",
              "requiredField": true
            }
          ]
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "3c8ad682-a662-4266-bdb5-732f6bb8614c",
      "name": "OpenAI Modèle de Chat",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        304,
        240
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-5-chat-latest",
          "cachedResultName": "gpt-5-chat-latest"
        },
        "options": {
          "responseFormat": "json_object"
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "dMiSy27YCK6c6rra",
          "name": "Duv's OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "074eea9f-b07e-4677-8b58-75b92155df44",
      "name": "Diviser",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1008,
        16
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "List"
      },
      "typeVersion": 1
    },
    {
      "id": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
      "name": "Boucler sur les éléments",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1344,
        16
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
      "name": "Obtenir le nom et la valeur de l'objet",
      "type": "n8n-nodes-base.set",
      "position": [
        1584,
        256
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "3de0459c-a3bf-4db0-94cc-ce007fa5db55",
              "name": "={{ $('Prepare prompts and schema').item.json.ObjectName }}",
              "type": "string",
              "value": "={{ $json.PropertyValue }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "84f376a1-3ab5-4bab-b962-357e4f57854c",
      "name": "Note adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        640,
        -176
      ],
      "parameters": {
        "color": 5,
        "width": 288,
        "height": 384,
        "content": "## AI web-search to find all items that match the conditions\n\nDon't forget to connect your Linkup credentials."
      },
      "typeVersion": 1
    },
    {
      "id": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
      "name": "Interroger Linkup pour trouver la liste",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        736,
        16
      ],
      "parameters": {
        "url": "https://api.linkup.so/v1/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "q",
              "value": "={{ $json.discoveryQuery }}"
            },
            {
              "name": "depth",
              "value": "deep"
            },
            {
              "name": "outputType",
              "value": "structured"
            },
            {
              "name": "structuredOutputSchema",
              "value": "={{ JSON.stringify($json.discoverySchema) }}"
            },
            {
              "name": "includeImages",
              "value": "false"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "W7AgeoVOv60DlvyS",
          "name": "Linkup - web search AI"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
      "name": "Préparer le JSON final pour cet élément",
      "type": "n8n-nodes-base.code",
      "position": [
        2128,
        448
      ],
      "parameters": {
        "jsCode": "// Get the first key-value from the \"Get object name and value\" node\n// Replace 'Get_object_name_and_value' with the actual name of your node\nconst firstNodeData = $node[\"Get object name and value\"].json;\n\n// Get the previous node data (the one with multiple keys)\nconst previousNodeData = items[0].json;\n\n// Create the output object\nconst output = {};\n\n// Add the first key-value pair from the first node\n// Assuming the node only has one key-value pair\nconst firstKey = Object.keys(firstNodeData)[0];\noutput[firstKey] = String(firstNodeData[firstKey]);\n\n// Add all key-value pairs from the previous node, stringified\nfor (const [key, value] of Object.entries(previousNodeData)) {\n    if (Array.isArray(value)) {\n        output[key] = value.join(', ');\n    } else if (typeof value === 'object' && value !== null) {\n        output[key] = JSON.stringify(value);\n    } else {\n        output[key] = String(value);\n    }\n}\n\n// Return the new item\nreturn [{ json: output }];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "d170bc2a-68a3-497c-803b-78f904ec9351",
      "name": "Interroger Linkup pour trouver toutes les propriétés de cet élément",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1840,
        256
      ],
      "parameters": {
        "url": "https://api.linkup.so/v1/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "q",
              "value": "=For item: {{ $('Loop Over Items').item.json.PropertyValue }}\n{{ $('Prepare prompts and schema').item.json.enrichmentQuery }}"
            },
            {
              "name": "depth",
              "value": "standard"
            },
            {
              "name": "outputType",
              "value": "structured"
            },
            {
              "name": "structuredOutputSchema",
              "value": "={{ JSON.stringify($('Prepare prompts and schema').item.json.enrichmentSchema) }}"
            },
            {
              "name": "includeImages",
              "value": "false"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "W7AgeoVOv60DlvyS",
          "name": "Linkup - web search AI"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
      "name": "Préparer les invites et le schéma",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        256,
        16
      ],
      "parameters": {
        "text": "={{ $json['Describe your research'] }}",
        "batching": {},
        "messages": {
          "messageValues": [
            {
              "message": "=# Role\n\nYou are an AI research strategy generator for an automated research workflow. Your first task is to identify the primary **object** of the user's research (e.g., Company, Person, City, Product).\n\nYou will always return a valid JSON object with **five** keys, starting with `ObjectName`:\n\n{\n  \"ObjectName\": \"string\",\n  \"discoveryQuery\": \"string\",\n  \"discoverySchema\": { ... },\n  \"enrichmentQuery\": \"string\",\n  \"enrichmentSchema\": { ... }\n}\n\n\n## Step 0: Identify the ObjectName\n\n**Goal**: First, identify the core subject of the user's request and create a simple label for it.\n\n  * Based on the user's prompt, determine the primary object being researched.\n\n  * The **ObjectName** must be a simple, **singular noun** (e.g., \"Company\", not \"Companies\").\n\n  * This name should be a general category, not overly specific.\n\n  * **Examples**:\n\n      * If the request is `\"List 50 German fashion companies...\"`, the object is a company. So, **ObjectName** should be `\"Company\"`.\n      * If the request is `\"Find 25 CEOs of technology companies...\"`, the object is a person. So, **ObjectName** should be `\"Person\"`.\n      * If the request is `\"Provide 25 HEX color codes...\"`, the object is a color. So, **ObjectName** should be `\"Color\"`.\n\n\n## Step 1: Object Discovery\n\n**Goal**: Define **what to search for** and how to structure the list of results into a predictable array.\n\n  * **`discoveryQuery`**:\n\n      * This is a single sentence prompt that describes EXACTLY what list of items needs to be found.\n      * It must be explicit, concise, and human-readable.\n      * It must include a mention \"if not enough relevant items have been found, don't force adding the requested number, quality prevails\"\n\n  * **`discoverySchema`**:\n\n      * A JSON Schema that forces the output into a specific, non-changing structure.\n\n      * The structure is **fixed** and must be used exactly as shown below.\n\n      * **CRUCIAL**: You must set the `\"description\"` for `\"PropertyValue\"` to tell the AI what content to find. This description should correspond to the unique identifier of the `ObjectName` you identified in Step 0 (e.g., 'The official name of the company').\n\n      * **Fixed Structure Example**:\n\n        {\n          \"type\": \"object\",\n          \"properties\": {\n            \"List\": {\n              \"type\": \"array\",\n              \"items\": {\n                \"type\": \"object\",\n                \"properties\": {\n                  \"PropertyValue\": {\n                    \"type\": \"string\",\n                    \"description\": \"A clear description of what this value should be. E.g., 'The official name of the company'.\"\n                  }\n                },\n                \"required\": [\"PropertyValue\"]\n              }\n            }\n          },\n          \"required\": [\"List\"]\n        }\n\n\n### Step 2: Object Enrichment\n\n**Goal**: For each item discovered in Step 1, define **what extra information to research**. If not specified by the user, aim for 5-8 properties that make the most sense. Mention them in the enrichmentQuery, and give them easily readable names in the enrichmentSchema (e.g., prefer \"Company Name\" over \"companyName\").\n\n  * **`enrichmentQuery`**:\n\n      * A single sentence prompt for Linkup. Refer to the object generically based on your identified `ObjectName` (e.g., \"For that company...\", \"For that person...\"). The actual name of the item will be provided contextually, so do not use a placeholder.\n\n  * **`enrichmentSchema`**:\n\n      * A detailed JSON Schema object that defines all the fields to capture for each object, based on the user's goal.\n      * The root must be `\"type\": \"object\"`.\n      * All properties must be required (see example later)\n\n\n\n## Output Format\n\n  * Return a single, valid **JSON object** with five keys: `\"ObjectName\"`, `\"discoveryQuery\"`, `\"discoverySchema\"`, `\"enrichmentQuery\"`, and `\"enrichmentSchema\"`.\n  * Do not stringify the schemas; they must remain as JSON objects.\n  * Do not include explanations or any text outside the final JSON.\n\n\n### Example JSON Output\n\nHere is a complete example for the request: \"I need 50 german companies in fashion industry between 40 and 130 employees...\"\n\n{\n  \"ObjectName\": \"Company\",\n  \"discoveryQuery\": \"List 50 German fashion industry companies with 40 to 130 employees. If not enough relevant companies have been found, don't force adding the requested number, quality prevails\",\n  \"discoverySchema\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"List\": {\n        \"type\": \"array\",\n        \"items\": {\n          \"type\": \"object\",\n          \"properties\": {\n            \"PropertyValue\": {\n              \"type\": \"string\",\n              \"description\": \"The official name of the German fashion company.\"\n            }\n          },\n          \"required\": [\"PropertyValue\"]\n        }\n      }\n    },\n    \"required\": [\"List\"]\n  },\n  \"enrichmentQuery\": \"For that company, provide detailed business information useful for personalized outreach including its Website, employee count, headquarters, key contacts, and recent news.\",\n  \"enrichmentSchema\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"Company Name\": {\n        \"type\": \"string\",\n        \"description\": \"The official company name\"\n      },\n      \"Website\": {\n        \"type\": \"string\",\n        \"description\": \"Official website URL\"\n      },\n      \"Employee Count\": {\n        \"type\": \"integer\",\n        \"description\": \"Number of employees\"\n      },\n      \"Headquarters\": {\n        \"type\": \"string\",\n        \"description\": \"Headquarters location\"\n      },\n      \"Key Contacts\": {\n        \"type\": \"array\",\n        \"items\": {\n          \"type\": \"string\"\n        },\n        \"description\": \"List of key contact persons (e.g. CEO, Marketing Head)\"\n      },\n      \"Recent News\": {\n        \"type\": \"string\",\n        \"description\": \"Any recent news or updates about the company for outreach personalization\"\n      }\n    },\n    \"required\": [\n  \"Company Name\",\n  \"Website\",\n  \"Employee Count\",\n  \"Headquarters\",\n  \"Key Contacts\",\n  \"Recent News\"\n    ]\n  }\n}"
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
      "name": "Convertir en CSV",
      "type": "n8n-nodes-base.convertToFile",
      "position": [
        1664,
        -400
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "fa8be6ed-db4f-43a6-b5cf-b33ff400f266",
      "name": "Note adhésive2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -512,
        -416
      ],
      "parameters": {
        "width": 448,
        "height": 752,
        "content": "# **Dynamic AI Web Researcher**\n\nThis workflow turns any plain-text research request into a custom-built, structured spreadsheet (CSV). It uses a \"thinker\" AI to plan the research and a \"doer\" AI to execute it.\n\n## **How it works**\n1.  **Plan:** An AI \"thinker\" analyzes your request and dynamically creates a custom plan, deciding on the perfect spreadsheet columns for your goal.\n2.  **Discover:** An AI \"researcher\" (Linkup) performs a deep web search to find an initial list of items based on the plan.\n3.  **Enrich:** It then loops through each item, performing fast web searches to fill in all the detailed columns defined by the planner.\n4.  **Output:** The final, structured data is converted into a CSV file.\n\n## **How to use**\n1.  **Connect your AI provider** to the **OpenAI Chat Model** node.\n2.  **Connect Linkup:** Add your **Linkup API Key** to the two HTTP Request nodes that query Linkup.\n3.  **Run:** Activate the workflow and use the form to submit a research request.\n\n\n\n\n*This template was created by Guillaume Duvernay*"
      },
      "typeVersion": 1
    },
    {
      "id": "04ecb528-4934-4565-8677-e69917a56f58",
      "name": "Note adhésive3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        192,
        -176
      ],
      "parameters": {
        "color": 6,
        "width": 352,
        "height": 576,
        "content": "## The architect brain\n\nThis AI step defines how the output of the research will look like (CSV schema), and how to get there (prompts).\n\nMake sure to connect a powerful AI model"
      },
      "typeVersion": 1
    },
    {
      "id": "48f2305c-5ef5-41c0-8705-37a8582502e5",
      "name": "Note adhésive1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1760,
        64
      ],
      "parameters": {
        "color": 7,
        "width": 288,
        "height": 384,
        "content": "## AI web-search to find all information about one item\n\nDon't forget to connect your Linkup credentials."
      },
      "typeVersion": 1
    },
    {
      "id": "29343905-2b7c-4d34-8455-066039945a6a",
      "name": "Note adhésive4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1216,
        -112
      ],
      "parameters": {
        "color": 5,
        "width": 1088,
        "height": 816,
        "content": "## Running a loop on each item\n\nWithin this loop, each item from the list will go through an AI web search that will find all the values for the properties that the initial AI step had identified. These values will be cleaned and prepared before the outcome gets converted into a CSV."
      },
      "typeVersion": 1
    },
    {
      "id": "2cc1bca9-29ba-4d79-9e3f-6217c39d495a",
      "name": "Note adhésive5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1520,
        -592
      ],
      "parameters": {
        "color": 4,
        "width": 384,
        "height": 352,
        "content": "## The output: A custom CSV\n\nThis CSV contains one row per item that was found, and each column is a property that got enriched thanks to the Web AI search. "
      },
      "typeVersion": 1
    }
  ],
  "connections": {
    "074eea9f-b07e-4677-8b58-75b92155df44": {
      "main": [
        [
          {
            "node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e9d5daa7-aa07-4873-888f-b704cf0d6d7c": {
      "main": [
        [
          {
            "node": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3c8ad682-a662-4266-bdb5-732f6bb8614c": {
      "ai_languageModel": [
        [
          {
            "node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "7df78b4d-8c66-4353-a87e-7b151913f856": {
      "main": [
        [
          {
            "node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "baf2d169-9593-4ec2-9415-1ed45cb303d0": {
      "main": [
        [
          {
            "node": "d170bc2a-68a3-497c-803b-78f904ec9351",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c4b50e76-3ff0-4d07-830e-7141a6d90d4d": {
      "main": [
        [
          {
            "node": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "53b2a08a-f61f-4c60-8c25-9edc8731a9d4": {
      "main": [
        [
          {
            "node": "074eea9f-b07e-4677-8b58-75b92155df44",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad": {
      "main": [
        [
          {
            "node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d170bc2a-68a3-497c-803b-78f904ec9351": {
      "main": [
        [
          {
            "node": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Divers, Résumé IA, IA Multimodale

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Créer des articles de soutien à la recherche en utilisant la planification IA, la recherche Linkup et GPT-5
Créer des articles à base de recherche en utilisant la planification IA, la recherche Linkup et GPT-5
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NœudsGuillaume Duvernay
Création de contenu
Enregistrement et sauvegarde automatisés des flux de travail avec GPT-4 et Airtable
Utiliser GPT-4 et Airtable pour documenter et sauvegarder automatiquement les workflows
If
N8n
Set
+
If
N8n
Set
38 NœudsGuillaume Duvernay
Résumé IA
Analyse intelligente quotidienne des groupes WhatsApp : Analyse GPT-4.1 et transcription des messages vocaux
Analyse intelligente des groupes WhatsApp quotidiens : analyse GPT-4.1 et transcription des messages vocaux
If
Set
Code
+
If
Set
Code
52 NœudsDaniel Lianes
Divers
Créer des articles basés sur des faits à partir de sources de connaissances avec Lookio et OpenAI GPT
Créer des articles factuels à partir de sources de connaissances avec Lookio et OpenAI GPT
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NœudsGuillaume Duvernay
Création de contenu
Créer des articles basés sur des faits à partir de sources de connaissances avec Super RAG et GPT-5
Créer des articles factuels à partir de sources de connaissances avec Super RAG et GPT-5
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NœudsGuillaume Duvernay
RAG IA
演示 - 分享模板 - de职位描述构建候选人短名单
AI招聘流程:utilisationApolloetAirtablede职位à候选人短名单
Set
Limit
Switch
+
Set
Limit
Switch
40 NœudsFabian Herhold
Divers
Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds16
Catégorie3
Types de nœuds10
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Guillaume Duvernay

Guillaume Duvernay

@duv

AI and automation expert

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34