Jina AI DeepSearchに基づくAI駆動型研究
中級
これはOther, AI分野の自動化ワークフローで、6個のノードを含みます。主にCode, HttpRequest, ChatTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Jina AI DeepSearchを活用したAI駆動型研究
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
使用ノード (6)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "GToc9QTzJY1h1w3y",
"meta": {
"instanceId": "cba4a4a2eb5d7683330e2944837278938831ed3c042e20da6f5049c07ad14798",
"templateCredsSetupCompleted": true
},
"name": "AI-Powered Research with Jina AI Deep Search",
"tags": [],
"nodes": [
{
"id": "c76a7993-e7b1-426e-bcb4-9a18d9c72b83",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-820,
-140
],
"parameters": {
"color": 6,
"width": 740,
"height": 760,
"content": "\n# **🚀 Developed by Leonard van Hemert** \n\nThank you for using **FREE: Open Deep Research 2.0**! 🎉 \n\nThis workflow was created to **democratize AI-powered research** and make advanced **automated knowledge discovery** available to **everyone**, without **API restrictions** or **cost barriers**. \n\nIf you find this useful, feel free to **connect with me on LinkedIn** and stay updated on my latest AI & automation projects! \n\n🔗 **Follow me on LinkedIn**: [Leonard van Hemert](https://www.linkedin.com/in/leonard-van-hemert/) \n\nI truly appreciate the support from the **n8n community**, and I can’t wait to see how you use and improve this workflow! 🚀 \n\nHappy researching, \n**Leonard van Hemert** 💡"
},
"typeVersion": 1
},
{
"id": "5620b6b5-1485-43a8-9acd-3368147bd742",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-60,
-140
],
"parameters": {
"width": 740,
"height": 300,
"content": "## 🚀 **FREE: Open Deep Research 2.0** \nFully automated **AI-powered research workflow** using **Jina AI’s DeepSearch** to generate structured, fact-based reports—**no API key required!** "
},
"typeVersion": 1
},
{
"id": "dbe1cc91-34b4-4e5b-b404-dd86f47d1ebf",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-60,
180
],
"parameters": {
"width": 740,
"height": 440,
"content": "## 🧠 **How This Workflow Works** \n\nThis workflow automates **deep research and report generation** using **Jina AI's DeepSearch API**, making **advanced knowledge discovery accessible for free**. \n\n1️⃣ **User Input → AI Research** \n- A user **enters a research query** via chat. \n- The workflow **sends the query** to **Jina AI’s DeepSearch API** for **in-depth analysis**. \n\n2️⃣ **AI-Powered Insights** \n- DeepSearch **retrieves** and **analyzes** relevant information. \n- The response includes **key insights, structured analysis, and sources**. \n\n3️⃣ **Markdown Formatting & Cleanup** \n- The response **passes through a Code Node** that extracts, cleans, and **formats** the AI-generated insights into **readable Markdown output**. \n- URLs are properly formatted, footnotes are structured, and the report is easy to read. \n\n4️⃣ **Final Output** \n- The final, **well-structured research report** is ready for use, **fully automated and free of charge!** "
},
"typeVersion": 1
},
{
"id": "42fd2f04-7d83-44c9-a41b-48860efbcf79",
"name": "Jina AI DeepSearchリクエスト",
"type": "n8n-nodes-base.httpRequest",
"position": [
220,
0
],
"parameters": {
"url": "https://deepsearch.jina.ai/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"jina-deepsearch-v1\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"You are an advanced AI researcher that provides precise, well-structured, and insightful reports based on deep analysis. Your responses are factual, concise, and highly relevant.\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Hi, how can I help you?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"Provide a deep and insightful analysis on: \\\"{{ $json.chatInput }}\\\". Ensure the response is well-structured, fact-based, and directly relevant to the topic, with no unnecessary information.\"\n }\n ],\n \"stream\": true,\n \"reasoning_effort\": \"low\"\n}",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2
},
{
"id": "1b7b3bbe-2068-4d3a-a962-134bbb6ee516",
"name": "ユーザーリサーチクエリ入力",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
0,
0
],
"webhookId": "8a4b05af-cd63-4692-9924-e35aaed5f077",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "218cbfe2-78de-4b00-875a-51761ac9f5c7",
"name": "AI応答のフォーマット&クリーンアップ",
"type": "n8n-nodes-base.code",
"position": [
440,
0
],
"parameters": {
"jsCode": "function extractAndFormatMarkdown(input) {\n let extractedContent = [];\n\n // Extract raw data string from n8n input\n let rawData = input.first().json.data;\n\n // Split into individual JSON strings\n let jsonStrings = rawData.split(\"\\n\\ndata: \").map(s => s.replace(/^data: /, ''));\n\n let lastContent = \"\";\n \n // Reverse loop to find the last \"content\" field\n for (let i = jsonStrings.length - 1; i >= 0; i--) {\n try {\n let parsedChunk = JSON.parse(jsonStrings[i]);\n\n if (parsedChunk.choices && parsedChunk.choices.length > 0) {\n for (let j = parsedChunk.choices.length - 1; j >= 0; j--) {\n let choice = parsedChunk.choices[j];\n\n if (choice.delta && choice.delta.content) {\n lastContent = choice.delta.content.trim();\n break;\n }\n }\n }\n\n if (lastContent) break; // Stop once the last content is found\n } catch (error) {\n console.error(\"Failed to parse JSON string:\", jsonStrings[i], error);\n }\n }\n\n // Clean and format Markdown\n lastContent = lastContent.replace(/\\[\\^(\\d+)\\]: (.*?)\\n/g, \"[$1]: $2\\n\"); // Format footnotes\n lastContent = lastContent.replace(/\\[\\^(\\d+)\\]/g, \"[^$1]\"); // Inline footnotes\n lastContent = lastContent.replace(/(https?:\\/\\/[^\\s]+)(?=[^]]*\\])/g, \"<$1>\"); // Format links\n\n // Return formatted content as an array of objects (n8n expects this format)\n return [{ text: lastContent.trim() }];\n}\n\n// Execute function and return formatted output\nreturn extractAndFormatMarkdown($input);\n"
},
"typeVersion": 2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "e03d69b5-3304-4f28-b99f-970d6fd1225b",
"connections": {
"1b7b3bbe-2068-4d3a-a962-134bbb6ee516": {
"main": [
[
{
"node": "42fd2f04-7d83-44c9-a41b-48860efbcf79",
"type": "main",
"index": 0
}
]
]
},
"218cbfe2-78de-4b00-875a-51761ac9f5c7": {
"main": [
[]
]
},
"42fd2f04-7d83-44c9-a41b-48860efbcf79": {
"main": [
[
{
"node": "218cbfe2-78de-4b00-875a-51761ac9f5c7",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - その他, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
AI SEO可読性審査:ウェブサイトのLLM対応状況の確認
AI SEO可読性審査:ウェブサイトの大規模言語モデルに対する対応状況の確認
Code
Http Request
Chain Llm
+
Code
Http Request
Chain Llm
8 ノードLeonard
人工知能
⚡AI驱动のYouTube播放列表と视频摘要与分析v2
AI YouTube播放列表与视频分析チャットボット
If
Set
Code
+
If
Set
Code
72 ノードdmr
その他
私のワークフロー 3
Llama Parser、Gemini LLM、Pinecone DBを基にしたドキュメント分析・チャットボット作成
If
Code
Gmail
+
If
Code
Gmail
36 ノードpavith
その他
試験問題生成
GoogleドキュメントとGeminiを基にしたAI駆動の自動試験問題・解答生成
Code
Google Docs
Http Request
+
Code
Google Docs
Http Request
37 ノードDavide
その他
受信メールをマークして、ナレッジグラフを構築し、Telegramで通知する
Gemini AIによるGmailラベルの自動振り分けと、InfraNodus knowledge graphの構築、Telegram経由でのリマインド送信
Code
Wait
Gmail
+
Code
Wait
Gmail
28 ノードInfraNodus
その他
DeepSeek AI、Qdrantベクトルデータベース、Google Driveを基盤とした自動書籍要約
DeepSeek AI、Qdrantベクトルデータベース、Google Driveを基盤にした自動書籍要約
Code
Split Out
Google Drive
+
Code
Split Out
Google Drive
23 ノードAdam Crafts
その他