Bright Data MCPとGoogle Geminiを使用した法の事例研究抽出ツール、データマイニングツール

上級

これはAI, IT Ops分野の自動化ワークフローで、22個のノードを含みます。主にSet, Code, Wait, Function, McpClientなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright Data MCPとGoogle Geminiを使用した法のケーススタディ抽出データマイニングツール

前提条件
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Gemini API Key

カテゴリー

ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "Qgx75aQeRKXKtqm7",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Legal Case Research Extractor, Data Miner with Bright Data MCP & Google Gemini",
  "tags": [
    {
      "id": "ZOwtAMLepQaGW76t",
      "name": "Building Blocks",
      "createdAt": "2025-04-13T15:23:40.462Z",
      "updatedAt": "2025-04-13T15:23:40.462Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "9e9a27ce-b95c-4ecd-b3c4-97aba420ce45",
      "name": "ワークフロー「テスト」クリック時",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -520,
        140
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "3f9e30b5-7eb3-454d-a831-07be51f7a326",
      "name": "付箋",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        40
      ],
      "parameters": {
        "color": 4,
        "width": 440,
        "height": 320,
        "content": "## Bright Data Legal Case Research Scraper"
      },
      "typeVersion": 1
    },
    {
      "id": "8f1934bf-ccec-4b25-b6cc-7607dcbdf798",
      "name": "Bright Data全ツール一覧表示",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        -300,
        140
      ],
      "parameters": {},
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f8c4804a-85ad-462c-913d-e0bc5242bc74",
      "name": "LinkedIn企業情報抽出用バイナリデータ作成",
      "type": "n8n-nodes-base.function",
      "position": [
        2440,
        60
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "c616db9f-fcf3-4f9d-b60f-a16c9da89456",
      "name": "付箋2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        -180
      ],
      "parameters": {
        "width": 440,
        "height": 120,
        "content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
      },
      "typeVersion": 1
    },
    {
      "id": "048c1093-ea88-441c-98fa-a2d003ab6b8d",
      "name": "法律ケース研究URL設定",
      "type": "n8n-nodes-base.set",
      "position": [
        -20,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "214e61a0-3587-453f-baf5-eac013990857",
              "name": "url",
              "type": "string",
              "value": "https://www.courtlistener.com/?q=IT%20laws%20for%20cyber%20crime&type=o&order_by=dateFiled%20desc&stat_Published=on"
            },
            {
              "id": "45014942-0a2e-4f46-b395-f82f97bfa93e",
              "name": "webhook_url",
              "type": "string",
              "value": "https://webhook.site/7b5380a0-0544-48dc-be43-0116cb2d52c2"
            },
            {
              "id": "bf011e1f-7032-49db-8f25-31ec4c35b9c5",
              "name": "base_url",
              "type": "string",
              "value": "https://www.courtlistener.com"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9",
      "name": "法律ケース研究用Bright Data MCPクライアント",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        200,
        140
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $json.url }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "f3ea0d19-703b-4f99-955c-122162065363",
      "name": "ケース抽出器",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        600,
        140
      ],
      "parameters": {
        "text": "=Extract the content in a structured format. Here's the content : {{ $json.result.content[0].text }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are an expert structured data extractor"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "a3fe5ce7-3a91-459d-8ef8-17a06fbef12a",
      "name": "構造化出力パーサー",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        800,
        360
      ],
      "parameters": {
        "jsonSchemaExample": "[{\n\"Id\": \"\",\n\"Link\" : \"\",\n\"Title\": \n\"United States v. IXCOLGONZALEZ\"\n}]"
      },
      "typeVersion": 1.2
    },
    {
      "id": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
      "name": "アイテムループ処理",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1320,
        140
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "74a02ac0-859d-4611-aeb0-021a654c92b8",
      "name": "ループ内法律ケース研究用Bright Data MCPクライアント",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        1860,
        160
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $('Set the Legal Case Research URL').item.json.base_url }}/{{ $json.Link }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "beb67c30-dd39-4c7d-94f8-853410dec09b",
      "name": "ループ内HTMLテキストデータ抽出",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2080,
        160
      ],
      "parameters": {
        "text": "=Extract html to textual content  {{ $json.result.content[0].text }}",
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "b7fc74e5-4165-4b1a-9c0a-27565302c0e1",
      "name": "ループ内HTMLテキストデータ抽出用Webhook通知",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2440,
        260
      ],
      "parameters": {
        "url": "={{ $('Set the Legal Case Research URL').item.json.webhook_url }}",
        "options": {},
        "sendBody": true,
        "contentType": "multipart-form-data",
        "bodyParameters": {
          "parameters": [
            {
              "name": "case_content",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "07b78de1-fdc8-4233-a231-37258fa5d1f0",
      "name": "ケース内容をディスクに書き込み",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2700,
        60
      ],
      "parameters": {
        "options": {},
        "fileName": "=d:\\Case-{{ $('Loop Over Items').item.json['Id'] }}.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "ff687082-9e3d-4043-9aa6-29e3029499d4",
      "name": "ケースデータ抽出用GoogleGeminiチャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        580,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0057d772-732e-4e47-8ab8-eebe140df692",
      "name": "ケースコレクション出力コード",
      "type": "n8n-nodes-base.code",
      "position": [
        980,
        140
      ],
      "parameters": {
        "jsCode": "\nreturn $input.first().json.output"
      },
      "typeVersion": 2
    },
    {
      "id": "c843170b-e360-4eea-853c-ef38c9f3affe",
      "name": "ループ内HTMLテキストデータ抽出用GoogleGeminiチャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2100,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "90f4670a-1fca-4826-9017-64a31f29cbc2",
      "name": "付箋1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        0
      ],
      "parameters": {
        "color": 5,
        "width": 1660,
        "height": 520,
        "content": "## Bright Data Legal Case Research Scraper\n\nLoop through and perform the data extraction using MCP and LLMs"
      },
      "typeVersion": 1
    },
    {
      "id": "58aac68b-2598-465b-ab3c-f5c0ebcdb595",
      "name": "付箋4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        -260
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 220,
        "content": "## LLM Usages\n\nOpenAI 4o mini LLM is being utilized for the structured data extraction handling."
      },
      "typeVersion": 1
    },
    {
      "id": "14bbbc73-06cd-4513-b9e6-2aebb5009c3d",
      "name": "付箋5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -860
      ],
      "parameters": {
        "color": 7,
        "width": 400,
        "height": 400,
        "content": "## Logo\n\n\n![logo](https://images.seeklogo.com/logo-png/43/1/brightdata-logo-png_seeklogo-439974.png)\n"
      },
      "typeVersion": 1
    },
    {
      "id": "96d74c50-074e-4b83-9422-ff2ce56bd55d",
      "name": "付箋3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -360
      ],
      "parameters": {
        "width": 400,
        "height": 320,
        "content": "## Note\n\nDeals with the Legal Case data extraction by utilizing the Bright Data MCP and OpenAI GPT 4o LLM.\n\n**Please make sure to set the input fields node with the Legal case URL\n\nPlease make sure to update the Webhook Notification URL of your interest**"
      },
      "typeVersion": 1
    },
    {
      "id": "08c6a217-5773-4ebc-ba6e-326de99e90e5",
      "name": "待機",
      "type": "n8n-nodes-base.wait",
      "position": [
        1580,
        160
      ],
      "webhookId": "65c9fcd3-2c82-4bdd-80b6-271d65b7f61a",
      "parameters": {
        "amount": 10
      },
      "typeVersion": 1.1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "03af01f8-7276-4c3c-a610-6532f0d51ef7",
  "connections": {
    "08c6a217-5773-4ebc-ba6e-326de99e90e5": {
      "main": [
        [
          {
            "node": "74a02ac0-859d-4611-aeb0-021a654c92b8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3ea0d19-703b-4f99-955c-122162065363": {
      "main": [
        [
          {
            "node": "0057d772-732e-4e47-8ab8-eebe140df692",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538": {
      "main": [
        [],
        [
          {
            "node": "08c6a217-5773-4ebc-ba6e-326de99e90e5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a3fe5ce7-3a91-459d-8ef8-17a06fbef12a": {
      "ai_outputParser": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "8f1934bf-ccec-4b25-b6cc-7607dcbdf798": {
      "main": [
        [
          {
            "node": "048c1093-ea88-441c-98fa-a2d003ab6b8d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "07b78de1-fdc8-4233-a231-37258fa5d1f0": {
      "main": [
        []
      ]
    },
    "048c1093-ea88-441c-98fa-a2d003ab6b8d": {
      "main": [
        [
          {
            "node": "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9e9a27ce-b95c-4ecd-b3c4-97aba420ce45": {
      "main": [
        [
          {
            "node": "8f1934bf-ccec-4b25-b6cc-7607dcbdf798",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0057d772-732e-4e47-8ab8-eebe140df692": {
      "main": [
        [
          {
            "node": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "beb67c30-dd39-4c7d-94f8-853410dec09b": {
      "main": [
        [
          {
            "node": "f8c4804a-85ad-462c-913d-e0bc5242bc74",
            "type": "main",
            "index": 0
          },
          {
            "node": "b7fc74e5-4165-4b1a-9c0a-27565302c0e1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9": {
      "main": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ff687082-9e3d-4043-9aa6-29e3029499d4": {
      "ai_languageModel": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f8c4804a-85ad-462c-913d-e0bc5242bc74": {
      "main": [
        [
          {
            "node": "07b78de1-fdc8-4233-a231-37258fa5d1f0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "74a02ac0-859d-4611-aeb0-021a654c92b8": {
      "main": [
        [
          {
            "node": "beb67c30-dd39-4c7d-94f8-853410dec09b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b7fc74e5-4165-4b1a-9c0a-27565302c0e1": {
      "main": [
        [
          {
            "node": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c843170b-e360-4eea-853c-ef38c9f3affe": {
      "ai_languageModel": [
        [
          {
            "node": "beb67c30-dd39-4c7d-94f8-853410dec09b",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - 人工知能, IT運用

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

関連ワークフロー

Bright DataとGoogle Geminiを使用したGoogle Mapsビジネス情報スクレイピングとリードリッチ化
Bright DataとGoogle Geminiを利用したGoogle Maps企業情報スクレイピングとリードリッチ化ツール
Set
Code
Wait
+
Set
Code
Wait
29 ノードRanjan Dailata
リード獲得
Bright Data MCPサーバーとGoogle Geminiを使ったLinkedInウェブスクレイピング
Bright Data MCPサーバーとGoogle Geminiを使用したLinkedInデータの抽出・変換
Set
Code
Merge
+
Set
Code
Merge
20 ノードRanjan Dailata
人工知能
Bright Data と OpenAI 4o mini を使用した自動履歴書求人情報マッチングエンジン
Bright Data MCP と OpenAI 4o mini を使った自動履歴書職業マッチングエンジン
Set
Function
Split Out
+
Set
Function
Split Out
22 ノードRanjan Dailata
人事
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
Brave検索による構造化データ抽出(Bright Data MCP + Google Gemini)
Bright Data MCPとGoogle Geminiを使用してBrave検索から構造化されたデータを抽出
Set
Switch
Function
+
Set
Switch
Function
24 ノードRanjan Dailata
人工知能
Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
ワークフロー情報
難易度
上級
ノード数22
カテゴリー2
ノードタイプ13
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

作成者
Ranjan Dailata

Ranjan Dailata

@ranjancse

A Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34