Amazon製品の価格下落をBright Dataで抽出・要約・分析
上級
これはAI, Marketing分野の自動化ワークフローで、26個のノードを含みます。主にSet, Wait, Merge, SplitOut, McpClientなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
- •Google Sheets API認証情報
- •Google Gemini API Key
使用ノード (26)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "L6nGDqfxvxzlvDU2",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Extract, Summarize, Sentiment Analysis of Price Drops for Amazon Products via Bright Data",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ZOwtAMLepQaGW76t",
"name": "Building Blocks",
"createdAt": "2025-04-13T15:23:40.462Z",
"updatedAt": "2025-04-13T15:23:40.462Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "c05c50b0-410e-428c-b9b9-c300b95b0ce8",
"name": "「Test workflow」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-760,
-595
],
"parameters": {},
"typeVersion": 1
},
{
"id": "e2bef95f-a42a-47f1-b49f-1e18a7a76fc5",
"name": "Bright Data MCP Client List Tools",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-540,
-595
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "03126e8e-b3ef-4bc1-966f-23050034e717",
"name": "入力フィールド設定",
"type": "n8n-nodes-base.set",
"position": [
-320,
-595
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "0ac91db2-9848-40d4-b942-cd7288597ded",
"name": "price_drop_url",
"type": "string",
"value": "https://camelcamelcamel.com/top_drops?t=daily"
},
{
"id": "88826650-2a6f-4d19-8a2f-27b039296a00",
"name": "webhook_notification_url",
"type": "string",
"value": "https://webhook.site/24878284-919d-4d39-bff0-5f36bfae17b6"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "bb47435e-750a-4767-85bc-8eb1d6af2bc7",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
160,
-780
],
"parameters": {
"color": 3,
"width": 440,
"height": 140,
"content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
},
"typeVersion": 1
},
{
"id": "377c7b92-4660-4130-a668-40752a52705a",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-300,
-880
],
"parameters": {
"color": 5,
"width": 440,
"height": 240,
"content": "## LLM Usages\n\nGoogle Gemini LLM is being utilized for the structured data extraction handling."
},
"typeVersion": 1
},
{
"id": "45f786b2-e785-4da5-af17-cd048bc93887",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-760,
-1280
],
"parameters": {
"color": 7,
"width": 440,
"height": 360,
"content": "## Logo\n\n\n\n"
},
"typeVersion": 1
},
{
"id": "83d52f24-3c6e-4640-9e95-e41c6c9cfa37",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-760,
-880
],
"parameters": {
"width": 440,
"height": 240,
"content": "## Note\n\nDeals with the extraction of price drop information of ecommerce produce and scraping the site by leveraging the Bright Data MCP Client.\n\nThis workflow is also responsible for the structured data extraction, sentiment analysis and summarization of content.\n\n**Please make sure to set the input fields**"
},
"typeVersion": 1
},
{
"id": "b0b39697-10e6-4066-8122-40775bb1472b",
"name": "分割",
"type": "n8n-nodes-base.splitOut",
"position": [
496,
-595
],
"parameters": {
"options": {},
"fieldToSplitOut": "output"
},
"typeVersion": 1
},
{
"id": "d73bf29c-b80c-47c4-b162-60a53bd4e0e0",
"name": "アイテムループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
716,
-595
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "c6e5c79a-2a5b-40ae-a0e5-188d35f75c39",
"name": "待機",
"type": "n8n-nodes-base.wait",
"position": [
936,
-770
],
"webhookId": "19a19f31-87fa-442c-85b2-472001ac344a",
"parameters": {
"amount": 10
},
"typeVersion": 1.1
},
{
"id": "fa7525b9-86b0-4646-994f-38b85a00f0d9",
"name": "コンテンツ要約",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1376,
-1120
],
"parameters": {
"options": {},
"chunkingMode": "advanced"
},
"retryOnFail": true,
"typeVersion": 2.1
},
{
"id": "1f6dd841-144f-44a7-9220-fd7aaf2090bd",
"name": "感情分析",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1376,
-620
],
"parameters": {
"text": "=Perform sentiment analysis of {{ $json.result.content[0].text }}",
"options": {},
"schemaType": "manual",
"inputSchema": "{\n \"$schema\": \"http://json-schema.org/schema#\",\n \"title\": \"EcommerceSentimentSubset\",\n \"type\": \"object\",\n \"properties\": {\n \"sentiment\": {\n \"type\": \"string\",\n \"enum\": [\"positive\", \"neutral\", \"negative\"],\n \"description\": \"Categorized sentiment from NLP analysis\"\n },\n \"sentimentScore\": {\n \"type\": \"number\",\n \"minimum\": -1,\n \"maximum\": 1,\n \"description\": \"Numeric sentiment polarity score (-1 = very negative, 1 = very positive)\"\n },\n \"topics\": {\n \"type\": \"array\",\n \"description\": \"Key aspects mentioned in the review (e.g., battery, build quality, delivery)\",\n \"items\": {\n \"type\": \"string\"\n }\n }\n }\n}\n"
},
"retryOnFail": true,
"typeVersion": 1.1
},
{
"id": "db2330d2-2490-4822-b5c5-519fecb95c1d",
"name": "Google Gemini Chat Model for Summarize Content",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1380,
-900
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "b887a1a5-4de1-43bb-b51c-fd218d5ca2e6",
"name": "Google Gemini Chat Model for Sentiment Analysis",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1464,
-400
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "e14757c2-3457-445b-9acf-5391de2d61fc",
"name": "結合",
"type": "n8n-nodes-base.merge",
"position": [
1752,
-770
],
"parameters": {},
"typeVersion": 3.1
},
{
"id": "fc1dc2fd-e407-4e7c-acf8-5d29ebb18956",
"name": "Google Sheets更新",
"type": "n8n-nodes-base.googleSheets",
"position": [
2192,
-520
],
"parameters": {
"columns": {
"value": {
"output": "={{ $json.data.toJsonString() }}"
},
"schema": [
{
"id": "output",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "output",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"output"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10gAihQMT8-h8Mpehe9j-xxN4oTTpg8qwToI-I-Eauew/edit#gid=0",
"cachedResultName": "Sheet1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1a1yb4XSMQ0Vs0Rg2RCwrcIVXwDN3ImXW_4OUebURKZI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1a1yb4XSMQ0Vs0Rg2RCwrcIVXwDN3ImXW_4OUebURKZI/edit?usp=drivesdk",
"cachedResultName": "Pricedrop Info"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "Zjoxh2BUZ6VXGQhA",
"name": "Google Sheets account"
}
},
"typeVersion": 4.5
},
{
"id": "65f7cc8e-7776-4712-b131-bc8374fbce20",
"name": "Webhook 値下げ情報通知",
"type": "n8n-nodes-base.httpRequest",
"position": [
2192,
-770
],
"parameters": {
"url": "={{ $('Set input fields').item.json.webhook_notification_url }}",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "response",
"value": "={{ $json.data.toJsonString() }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "707977ff-cdfb-4020-86f4-5d0be44ee52f",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
100,
-360
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "bbc02162-176f-4131-9f63-d5e39fb52b9b",
"name": "構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
320,
-360
],
"parameters": {
"jsonSchemaExample": "[{\n\"id\": \"unique_id\",\n\"title\": \n\"Atosa MBF8005GR 52″ Reach-In Refrigerator for Restaurant Deli Cafeteria Steak House | Top Mount Compressor, 43.2 Cu. Ft. | 2-Solid Swing Door, 6 Adjustable Epoxy Coated Shelves | Stainless Steel, 115v\",\n\"price\": \n\"$2,919.48\",\n\"savings\": \n\"Save 18% ($649.36)\",\n\"link\": \n\"https://camelcamelcamel.com/product/07BH0Y75B4KUYI1YP78IB/go?context=top%5Fdrops&ctx%5Fpid=94751977&ctx%5Fcid=-1&ctx%5Faid=-1&ctx%5Fact=buy&ctx%5Fsrc=buy-button&&sjc=1\"\n}]"
},
"typeVersion": 1.2
},
{
"id": "fd27eb98-e1ec-4747-9aeb-c0bf491e057a",
"name": "LLMを使用した構造化データ抽出",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
120,
-595
],
"parameters": {
"text": "=Extract structured data from {{ $json.result.content[0].text }}",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"retryOnFail": true,
"typeVersion": 1.7
},
{
"id": "6a0bc566-2eb8-4eea-bf11-d040f352fbf7",
"name": "値下げデータ抽出用MCPクライアント",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-100,
-595
],
"parameters": {
"toolName": "scrape_as_markdown",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.price_drop_url }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "22d7cba2-5d8f-4e2a-8d99-e1dd2b232fd3",
"name": "ループ内値下げデータ抽出用MCPクライアント",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
1156,
-770
],
"parameters": {
"toolName": "scrape_as_markdown",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.link }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "1ccf68b1-ab0c-4288-8892-f6736639f952",
"name": "集計",
"type": "n8n-nodes-base.aggregate",
"position": [
1972,
-770
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "cf8bdb20-18e5-4d29-b582-65b2b9c7aa32",
"name": "再帰的文字列分割器",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1580,
-900
],
"parameters": {
"options": {},
"chunkSize": 5000
},
"typeVersion": 1
},
{
"id": "3207d699-e620-4324-b71e-29aec2ffaf9a",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
1880,
-860
],
"parameters": {
"color": 5,
"width": 560,
"height": 640,
"content": "## Output Data Handling "
},
"typeVersion": 1
},
{
"id": "26874b27-2d9e-4564-ade2-87f236b250e0",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
-1200
],
"parameters": {
"color": 4,
"width": 1080,
"height": 980,
"content": "## Loop and Extract Data\n\nPerform Summarization & Sentiment Analysis"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c9e4ce77-7ccb-47dd-90b8-e9b45036ca5e",
"connections": {
"c6e5c79a-2a5b-40ae-a0e5-188d35f75c39": {
"main": [
[
{
"node": "22d7cba2-5d8f-4e2a-8d99-e1dd2b232fd3",
"type": "main",
"index": 0
}
]
]
},
"e14757c2-3457-445b-9acf-5391de2d61fc": {
"main": [
[
{
"node": "1ccf68b1-ab0c-4288-8892-f6736639f952",
"type": "main",
"index": 0
}
]
]
},
"1ccf68b1-ab0c-4288-8892-f6736639f952": {
"main": [
[
{
"node": "fc1dc2fd-e407-4e7c-acf8-5d29ebb18956",
"type": "main",
"index": 0
},
{
"node": "65f7cc8e-7776-4712-b131-bc8374fbce20",
"type": "main",
"index": 0
}
]
]
},
"b0b39697-10e6-4066-8122-40775bb1472b": {
"main": [
[
{
"node": "d73bf29c-b80c-47c4-b162-60a53bd4e0e0",
"type": "main",
"index": 0
}
]
]
},
"d73bf29c-b80c-47c4-b162-60a53bd4e0e0": {
"main": [
[],
[
{
"node": "c6e5c79a-2a5b-40ae-a0e5-188d35f75c39",
"type": "main",
"index": 0
}
]
]
},
"03126e8e-b3ef-4bc1-966f-23050034e717": {
"main": [
[
{
"node": "6a0bc566-2eb8-4eea-bf11-d040f352fbf7",
"type": "main",
"index": 0
}
]
]
},
"fa7525b9-86b0-4646-994f-38b85a00f0d9": {
"main": [
[
{
"node": "e14757c2-3457-445b-9acf-5391de2d61fc",
"type": "main",
"index": 0
}
]
]
},
"1f6dd841-144f-44a7-9220-fd7aaf2090bd": {
"main": [
[
{
"node": "e14757c2-3457-445b-9acf-5391de2d61fc",
"type": "main",
"index": 1
}
]
]
},
"fc1dc2fd-e407-4e7c-acf8-5d29ebb18956": {
"main": [
[
{
"node": "d73bf29c-b80c-47c4-b162-60a53bd4e0e0",
"type": "main",
"index": 0
}
]
]
},
"707977ff-cdfb-4020-86f4-5d0be44ee52f": {
"ai_languageModel": [
[
{
"node": "fd27eb98-e1ec-4747-9aeb-c0bf491e057a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"bbc02162-176f-4131-9f63-d5e39fb52b9b": {
"ai_outputParser": [
[
{
"node": "fd27eb98-e1ec-4747-9aeb-c0bf491e057a",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"fd27eb98-e1ec-4747-9aeb-c0bf491e057a": {
"main": [
[
{
"node": "b0b39697-10e6-4066-8122-40775bb1472b",
"type": "main",
"index": 0
}
]
]
},
"e2bef95f-a42a-47f1-b49f-1e18a7a76fc5": {
"main": [
[
{
"node": "03126e8e-b3ef-4bc1-966f-23050034e717",
"type": "main",
"index": 0
}
]
]
},
"cf8bdb20-18e5-4d29-b582-65b2b9c7aa32": {
"ai_textSplitter": [
[
{
"node": "fa7525b9-86b0-4646-994f-38b85a00f0d9",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"c05c50b0-410e-428c-b9b9-c300b95b0ce8": {
"main": [
[
{
"node": "e2bef95f-a42a-47f1-b49f-1e18a7a76fc5",
"type": "main",
"index": 0
}
]
]
},
"6a0bc566-2eb8-4eea-bf11-d040f352fbf7": {
"main": [
[
{
"node": "fd27eb98-e1ec-4747-9aeb-c0bf491e057a",
"type": "main",
"index": 0
}
]
]
},
"db2330d2-2490-4822-b5c5-519fecb95c1d": {
"ai_languageModel": [
[
{
"node": "fa7525b9-86b0-4646-994f-38b85a00f0d9",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"b887a1a5-4de1-43bb-b51c-fd218d5ca2e6": {
"ai_languageModel": [
[
{
"node": "1f6dd841-144f-44a7-9220-fd7aaf2090bd",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"22d7cba2-5d8f-4e2a-8d99-e1dd2b232fd3": {
"main": [
[
{
"node": "fa7525b9-86b0-4646-994f-38b85a00f0d9",
"type": "main",
"index": 0
},
{
"node": "1f6dd841-144f-44a7-9220-fd7aaf2090bd",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - 人工知能, マーケティング
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
ビング・データとGoogle Geminiを使ってYelpの店舗口コミを抽出し、要約
Bright DataとGoogle Geminiを使ってYelpの商家レビューを抽出し、要約する
Set
Merge
Http Request
+
Set
Merge
Http Request
12 ノードRanjan Dailata
人工知能
Brave検索による構造化データ抽出(Bright Data MCP + Google Gemini)
Bright Data MCPとGoogle Geminiを使用してBrave検索から構造化されたデータを抽出
Set
Switch
Function
+
Set
Switch
Function
24 ノードRanjan Dailata
人工知能
Bright Data MCPサーバーとGoogle Geminiを使ったLinkedInウェブスクレイピング
Bright Data MCPサーバーとGoogle Geminiを使用したLinkedInデータの抽出・変換
Set
Code
Merge
+
Set
Code
Merge
20 ノードRanjan Dailata
人工知能
Bright Data と Google Gemini を使用した LinkedIn から企業ストーリーの生成
Bright DataとGoogle Geminiを使ってLinkedInから企業のストーリー生成
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
営業
ワークフロー情報
難易度
上級
ノード数26
カテゴリー2
ノードタイプ17
作成者
Ranjan Dailata
@ranjancseA Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com
外部リンク
n8n.ioで表示 →
このワークフローを共有