Bright Data と Google Gemini を使用した LinkedIn から企業ストーリーの生成

上級

これはSales, AI, Marketing分野の自動化ワークフローで、19個のノードを含みます。主にIf, Set, Wait, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright DataとGoogle Geminiを使ってLinkedInから企業のストーリー生成

前提条件
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Gemini API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "q1DorytEoEw1QLGj",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Generate Company Stories from LinkedIn with Bright Data & Google Gemini",
  "tags": [
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    },
    {
      "id": "rKOa98eAi3IETrLu",
      "name": "HR",
      "createdAt": "2025-04-13T04:59:30.580Z",
      "updatedAt": "2025-04-13T04:59:30.580Z"
    }
  ],
  "nodes": [
    {
      "id": "1424195e-79ec-48e8-9bb6-fbae072aca81",
      "name": "「Test workflow」クリック時",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1440,
        245
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "509519c2-efe9-4191-87af-9c5c782350d6",
      "name": "Google Gemini Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "notes": "Gemini Experimental Model",
      "position": [
        696,
        540
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-thinking-exp-01-21"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "3be8be65-38c2-4500-8676-925bdf7844ac",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        816,
        542.5
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "65b72f55-6424-487b-a622-879589d43344",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        904,
        740
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 100
      },
      "typeVersion": 1
    },
    {
      "id": "4ab31927-5372-4a8f-83b5-355bcd6eaae2",
      "name": "If",
      "type": "n8n-nodes-base.if",
      "position": [
        -340,
        170
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "6a7e5360-4cb5-4806-892e-5c85037fa71c",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $('Check Snapshot Status').item.json.status }}",
              "rightValue": "ready"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "30382d3b-6ba8-4a96-93ce-9d22fc547793",
      "name": "Set Snapshot Id",
      "type": "n8n-nodes-base.set",
      "position": [
        -780,
        245
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2c3369c6-9206-45d7-9349-f577baeaf189",
              "name": "snapshot_id",
              "type": "string",
              "value": "={{ $json.snapshot_id }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "a4867b6f-fa91-4b83-befc-9ce97c10228c",
      "name": "Download Snapshot",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        100,
        120
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/snapshot/{{ $json.snapshot_id }}",
        "options": {
          "timeout": 10000
        },
        "sendQuery": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "format",
              "value": "json"
            }
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "16580d94-23fc-45d6-a282-640148b602d3",
      "name": "Set LinkedIn URL",
      "type": "n8n-nodes-base.set",
      "position": [
        -1220,
        245
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "47f839a1-df2a-4972-9dad-597a8af0bf75",
              "name": "url",
              "type": "string",
              "value": "https://il.linkedin.com/company/bright-data"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "be007904-269a-4823-bdd8-1ba5b4f69f5c",
      "name": "Google Gemini Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        408,
        340
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "56a08c75-5122-483e-af0e-da1dd3e08eaf",
      "name": "Check on the errors",
      "type": "n8n-nodes-base.if",
      "position": [
        -120,
        120
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "b267071c-7102-407b-a98d-f613bcb1a106",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $json.errors.toString() }}",
              "rightValue": "0"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "6925a606-1108-4605-9124-c74d3df555ac",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1420,
        -100
      ],
      "parameters": {
        "width": 400,
        "height": 280,
        "content": "## Note\n\nDeals with the LinkedIn data extraction using the Bright Data Web Scrapper API.\n\nThe information extraction and summarization are being used to demonstrate the usage of the N8N AI capabilities.\n\n**Please make sure to set the LinkedIn URL and Webhook Notification URL**"
      },
      "typeVersion": 1
    },
    {
      "id": "a5f977db-14e5-4652-b2d3-0a1b0470be9a",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -940,
        -100
      ],
      "parameters": {
        "width": 420,
        "height": 280,
        "content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nInformation extraction is being used for formatting the LinkedIn response to produce a story.\n\nSummarization Chain is being used for summarization of the content"
      },
      "typeVersion": 1
    },
    {
      "id": "ae6377e2-6ca0-4218-affd-d3c81c16d996",
      "name": "Perform LinkedIn Web Request",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -1000,
        245
      ],
      "parameters": {
        "url": "https://api.brightdata.com/datasets/v3/trigger",
        "method": "POST",
        "options": {},
        "jsonBody": "=[\n  {\n    \"url\": \"{{ $json.url }}\"\n  }\n]",
        "sendBody": true,
        "sendQuery": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "dataset_id",
              "value": "gd_l1vikfnt1wgvvqz95w"
            },
            {
              "name": "include_errors",
              "value": "true"
            }
          ]
        },
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "9a1e8d92-24a9-481c-b81f-5e37bca46fe2",
      "name": "Check Snapshot Status",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -560,
        245
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/progress/{{ $json.snapshot_id }}",
        "options": {},
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "543d6087-c1d8-4f98-9b7c-fedbce9b0215",
      "name": "LinkedIn Data Extractor",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        320,
        120
      ],
      "parameters": {
        "text": "=Write a complete story of the provided company information in JSON. Use the following Company info to produce a story or a blog post. Make sure to incorporate all the provided company context.\n\nHere's the Company Info in JSON - {{ $json.input }}",
        "options": {
          "systemPromptTemplate": "You are an expert data formatter"
        },
        "attributes": {
          "attributes": [
            {
              "name": "company_story",
              "required": true,
              "description": "Detailed Company Info"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d07c83f0-5adf-4d5a-976a-b344aa8a853e",
      "name": "Concise Summary Generator",
      "type": "@n8n/n8n-nodes-langchain.chainSummarization",
      "position": [
        712,
        320
      ],
      "parameters": {
        "options": {
          "summarizationMethodAndPrompts": {
            "values": {
              "prompt": "=Write a concise summary of the following:\n\n\n{{ $json.output.company_story }}\n\n",
              "combineMapPrompt": "=Write a concise summary of the following:\n\n\n\n\n\nCONCISE SUMMARY: {{ $json.output.company_story }}"
            }
          }
        },
        "operationMode": "documentLoader"
      },
      "typeVersion": 2
    },
    {
      "id": "0867753e-c3ab-473e-960a-344573cdde29",
      "name": "Webhook Notifier for Data Extractor",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        834,
        -80
      ],
      "parameters": {
        "url": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "d666cbb8-64bf-47b9-802a-d78ed5caa128",
      "name": "Webhook Notifier for Summary Generator",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1192,
        320
      ],
      "parameters": {
        "url": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.response.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "fbd962be-5003-4039-b17e-fc0f16c2edf7",
      "name": "Wait for 30 seconds",
      "type": "n8n-nodes-base.wait",
      "position": [
        -120,
        345
      ],
      "webhookId": "f2aafd71-61f2-4aa4-8290-fa3bbe3d46b9",
      "parameters": {
        "amount": 30
      },
      "typeVersion": 1.1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "0f4279a9-1593-421e-825e-850cdae1bb97",
  "connections": {
    "4ab31927-5372-4a8f-83b5-355bcd6eaae2": {
      "main": [
        [
          {
            "node": "56a08c75-5122-483e-af0e-da1dd3e08eaf",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "fbd962be-5003-4039-b17e-fc0f16c2edf7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "30382d3b-6ba8-4a96-93ce-9d22fc547793": {
      "main": [
        [
          {
            "node": "9a1e8d92-24a9-481c-b81f-5e37bca46fe2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "16580d94-23fc-45d6-a282-640148b602d3": {
      "main": [
        [
          {
            "node": "ae6377e2-6ca0-4218-affd-d3c81c16d996",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a4867b6f-fa91-4b83-befc-9ce97c10228c": {
      "main": [
        [
          {
            "node": "543d6087-c1d8-4f98-9b7c-fedbce9b0215",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "56a08c75-5122-483e-af0e-da1dd3e08eaf": {
      "main": [
        [
          {
            "node": "a4867b6f-fa91-4b83-befc-9ce97c10228c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3be8be65-38c2-4500-8676-925bdf7844ac": {
      "ai_document": [
        [
          {
            "node": "d07c83f0-5adf-4d5a-976a-b344aa8a853e",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "fbd962be-5003-4039-b17e-fc0f16c2edf7": {
      "main": [
        [
          {
            "node": "9a1e8d92-24a9-481c-b81f-5e37bca46fe2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9a1e8d92-24a9-481c-b81f-5e37bca46fe2": {
      "main": [
        [
          {
            "node": "4ab31927-5372-4a8f-83b5-355bcd6eaae2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "543d6087-c1d8-4f98-9b7c-fedbce9b0215": {
      "main": [
        [
          {
            "node": "d07c83f0-5adf-4d5a-976a-b344aa8a853e",
            "type": "main",
            "index": 0
          },
          {
            "node": "0867753e-c3ab-473e-960a-344573cdde29",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "509519c2-efe9-4191-87af-9c5c782350d6": {
      "ai_languageModel": [
        [
          {
            "node": "d07c83f0-5adf-4d5a-976a-b344aa8a853e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "d07c83f0-5adf-4d5a-976a-b344aa8a853e": {
      "main": [
        [
          {
            "node": "d666cbb8-64bf-47b9-802a-d78ed5caa128",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "be007904-269a-4823-bdd8-1ba5b4f69f5c": {
      "ai_languageModel": [
        [
          {
            "node": "543d6087-c1d8-4f98-9b7c-fedbce9b0215",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "ae6377e2-6ca0-4218-affd-d3c81c16d996": {
      "main": [
        [
          {
            "node": "30382d3b-6ba8-4a96-93ce-9d22fc547793",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "65b72f55-6424-487b-a622-879589d43344": {
      "ai_textSplitter": [
        [
          {
            "node": "3be8be65-38c2-4500-8676-925bdf7844ac",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "1424195e-79ec-48e8-9bb6-fbae072aca81": {
      "main": [
        [
          {
            "node": "16580d94-23fc-45d6-a282-640148b602d3",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - 営業, 人工知能, マーケティング

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

関連ワークフロー

Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
ビング・データとGemini AIを使ってBing Copilot検索結果を抽出・要約
Gemini AIとBright Dataを使ってBing Copilot検索性別結果を抽出し、要約する
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
人工知能
Indeed社データスクレイピングとAirtable、Bright Data、Google Geminiの統合
Airtable、Bright Data、Google Geminiを用いたIndeedデータのスクレイピングと集約
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
人事
Bright DataとGoogle Geminiを使ってアマゾンの電子製品ベストセラー情報を抽出
Bright DataとGoogle Geminiを使ってAmazonの電子書籍セールスランキング情報を抽出
Set
Http Request
Manual Trigger
+
Set
Http Request
Manual Trigger
8 ノードRanjan Dailata
営業
Bright Dataを使用したブランドコンテンツの抽出・要約・感情分析
Bright DataとGoogle Geminiを使用してブランドコンテンツを抽出および分析
Set
Function
Http Request
+
Set
Function
Http Request
23 ノードRanjan Dailata
人工知能
Googleトレンドデータ抽出、Bright DataとGoogle Geminiを使用して要約生成
Bright DataとGoogle Geminiを利用したGoogleトレンドデータ抽出と要約生成
Set
Gmail
Function
+
Set
Gmail
Function
16 ノードRanjan Dailata
エンジニアリング
ワークフロー情報
難易度
上級
ノード数19
カテゴリー3
ノードタイプ11
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34