Indeed社データスクレイピングとAirtable、Bright Data、Google Geminiの統合
上級
これはHR, AI, Marketing, IT Ops分野の自動化ワークフローで、19個のノードを含みます。主にIf, Set, Wait, Airtable, Markdownなどのノードを使用、AI技術を活用したスマート自動化を実現。 Airtable、Bright Data、Google Geminiを用いたIndeedデータのスクレイピングと集約
前提条件
- •Airtable API Key
- •ターゲットAPIの認証情報が必要な場合あり
- •Google Gemini API Key
使用ノード (19)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "TTj6BiN7bQKTa6FM",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Indeed Company Data Scraper & Summarization with Airtable, Bright Data and Google Gemini",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
},
{
"id": "rKOa98eAi3IETrLu",
"name": "HR",
"createdAt": "2025-04-13T04:59:30.580Z",
"updatedAt": "2025-04-13T04:59:30.580Z"
}
],
"nodes": [
{
"id": "390ebd32-6ce4-4894-9b4f-7b376db5b724",
"name": "「Test workflow」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-220,
-545
],
"parameters": {},
"typeVersion": 1
},
{
"id": "8ba6b208-b4ad-443c-8b24-c51b3b5ad880",
"name": "Google Gemini 要約用チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1784,
-300
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "394a7291-618a-42f0-8e1b-18ed7c8496c3",
"name": "Webhook HTTP リクエスト",
"type": "@n8n/n8n-nodes-langchain.toolHttpRequest",
"position": [
2280,
-160
],
"parameters": {
"url": "https://webhook.site/daf9d591-a130-4010-b1d3-0c66f8fcf467",
"method": "POST",
"sendBody": true,
"parametersBody": {
"values": [
{
"name": "search_summary",
"value": "={{ $json.response.text }}",
"valueProvider": "fieldValue"
},
{
"name": "search_result"
}
]
},
"toolDescription": "Extract the response and format a structured JSON response"
},
"typeVersion": 1.1
},
{
"id": "4e1352a5-0fa6-4fee-a93d-cc0a0a4fdd6f",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
-1080
],
"parameters": {
"width": 400,
"height": 320,
"content": "## Note\n\nDeals with the Company web scraping by utilizing Bright Data Web Unlocker Product.\n\nThe Basic LLM Chain, Summarization and AI Agent are being used to demonstrate the usage of the n8n AI capabilities.\n\n**Please make sure to connect to Airtable with the Base Table as \"Indeed\" and the default Table1 filled with the indeed links to scrape. \n\nAlso make sure to update the Webhook Notification URL**"
},
"typeVersion": 1
},
{
"id": "bf184d27-ed62-44fa-bed2-65a1f703179e",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
720,
-1080
],
"parameters": {
"width": 480,
"height": 320,
"content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nBasic LLM Chain Data Extractor.\n\nSummarization Chain is being used for the summarization of search results.\n\nThe AI Agent formats the search result and pushes it to the Webhook via HTTP Request"
},
"typeVersion": 1
},
{
"id": "78f32ce2-1e79-4f3e-8561-4a5e07d88696",
"name": "Indeed Webリクエスト実行",
"type": "n8n-nodes-base.httpRequest",
"position": [
1100,
-670
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "={{ $('Set Bright Data Zone').item.json.zone }}"
},
{
"name": "url",
"value": "=https://www.indeed.com/cmp/{{ encodeURI($('Airtable').item.json.Link) }}?product=unlocker&method=api"
},
{
"name": "format",
"value": "raw"
},
{
"name": "data_format",
"value": "markdown"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "3738e714-59aa-4b0b-876c-c2f15a1d7479",
"name": "IndeedエキスパートAIエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2072,
-395
],
"parameters": {
"text": "=You are an Indeed Expert. You need to format the search result and push it to the Webhook via HTTP Request. Here is the search result - {{ $('Markdown to Textual Data Extractor').item.json.text }}",
"options": {},
"promptType": "define"
},
"typeVersion": 1.8
},
{
"id": "47e96e87-8ac7-43d7-af6f-b52404be4eec",
"name": "Google Gemini チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1408,
-300
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "b2b8f3f6-ef13-47ff-8e6e-4c262b352b2e",
"name": "Markdownテキストデータ抽出",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1320,
-520
],
"parameters": {
"text": "=You need to analyze the below markdown and convert to textual data.\n\n{{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are a markdown expert"
}
]
},
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "791d5991-0baa-4aff-8dbe-465c1335889f",
"name": "MarkdownからHTMLへ変換",
"type": "n8n-nodes-base.markdown",
"position": [
1398,
-820
],
"parameters": {
"mode": "markdownToHtml",
"options": {},
"markdown": "={{ $json.data }}"
},
"typeVersion": 1
},
{
"id": "844c49a6-edd0-4a63-944e-44310e39ab09",
"name": "MarkdownからHTMLレスポンスのWebhook通知開始",
"type": "n8n-nodes-base.httpRequest",
"position": [
1774,
-820
],
"parameters": {
"url": "https://webhook.site/daf9d591-a130-4010-b1d3-0c66f8fcf467",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "html_response",
"value": "={{ $json.data }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "cb7b971d-17a9-4b49-8807-7a9d4f7550d2",
"name": "Bright Dataゾーン設定",
"type": "n8n-nodes-base.set",
"position": [
0,
-545
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "4e7ee31d-da89-422f-8079-2ff2d357a0ba",
"name": "zone",
"type": "string",
"value": "web_unlocker1"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "47702b8b-5722-4fe0-93fc-950470b043c8",
"name": "アイテムループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
440,
-545
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "cb42b109-0950-45cb-ae74-3a87b724f6fc",
"name": "Airtable",
"type": "n8n-nodes-base.airtable",
"position": [
220,
-545
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "appHnxLQRVHbCzDyj",
"cachedResultUrl": "https://airtable.com/appHnxLQRVHbCzDyj",
"cachedResultName": "Indeed"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tblS1f5XWVMfdyjOz",
"cachedResultUrl": "https://airtable.com/appHnxLQRVHbCzDyj/tblS1f5XWVMfdyjOz",
"cachedResultName": "Table 1"
},
"options": {},
"operation": "search"
},
"credentials": {
"airtableTokenApi": {
"id": "yXTVs1Lgka4VUTCB",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "faf3d158-e625-4829-8e90-2549d747e674",
"name": "リンクフィールドが空でない場合",
"type": "n8n-nodes-base.if",
"position": [
880,
-670
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "42eae1de-1d71-4418-862d-9cb9f8fb44e6",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.Link }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "d81941a5-b267-4cac-9134-42caac9948ef",
"name": "待機",
"type": "n8n-nodes-base.wait",
"position": [
660,
-670
],
"webhookId": "f348d66e-ee91-40d4-8e52-83d8d3ca32f2",
"parameters": {
"amount": 10
},
"typeVersion": 1.1
},
{
"id": "6903a767-ab81-4a01-8b98-914afab45c63",
"name": "Indeed要約ツール",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1696,
-520
],
"parameters": {
"options": {}
},
"typeVersion": 2
},
{
"id": "1cd297e9-30b9-4cb3-b2b4-96bc1e3e9d95",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
200,
-1080
],
"parameters": {
"width": 480,
"height": 320,
"content": "## Airtable Table Data Sample \n[\n {\n \"id\": \"recCDNhVfdlc97cgf\",\n \"createdTime\": \"2025-04-14T02:55:31.000Z\",\n \"Tab\": \"Starbucks\",\n \"Link\": \"https://www.indeed.com/cmp/Starbucks\"\n },\n {\n \"id\": \"recR7VEJrwXX7XjVl\",\n \"createdTime\": \"2025-04-14T02:55:31.000Z\",\n \"Tab\": \"BrightData\",\n \"Link\": \"https://www.indeed.com/cmp/bright-data\"\n }\n]"
},
"typeVersion": 1
},
{
"id": "d125e31f-845b-498e-9b3c-e5e8c14ed166",
"name": "Google Gemini AIエージェント用チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
2080,
-160
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "98d3cc1a-123e-468e-814f-7a96d38b8e36",
"connections": {
"d81941a5-b267-4cac-9134-42caac9948ef": {
"main": [
[
{
"node": "faf3d158-e625-4829-8e90-2549d747e674",
"type": "main",
"index": 0
}
]
]
},
"cb42b109-0950-45cb-ae74-3a87b724f6fc": {
"main": [
[
{
"node": "47702b8b-5722-4fe0-93fc-950470b043c8",
"type": "main",
"index": 0
}
]
]
},
"47702b8b-5722-4fe0-93fc-950470b043c8": {
"main": [
[],
[
{
"node": "d81941a5-b267-4cac-9134-42caac9948ef",
"type": "main",
"index": 0
}
]
]
},
"6903a767-ab81-4a01-8b98-914afab45c63": {
"main": [
[
{
"node": "3738e714-59aa-4b0b-876c-c2f15a1d7479",
"type": "main",
"index": 0
}
]
]
},
"cb7b971d-17a9-4b49-8807-7a9d4f7550d2": {
"main": [
[
{
"node": "cb42b109-0950-45cb-ae74-3a87b724f6fc",
"type": "main",
"index": 0
}
]
]
},
"394a7291-618a-42f0-8e1b-18ed7c8496c3": {
"ai_tool": [
[
{
"node": "3738e714-59aa-4b0b-876c-c2f15a1d7479",
"type": "ai_tool",
"index": 0
}
]
]
},
"3738e714-59aa-4b0b-876c-c2f15a1d7479": {
"main": [
[
{
"node": "47702b8b-5722-4fe0-93fc-950470b043c8",
"type": "main",
"index": 0
}
]
]
},
"791d5991-0baa-4aff-8dbe-465c1335889f": {
"main": [
[
{
"node": "844c49a6-edd0-4a63-944e-44310e39ab09",
"type": "main",
"index": 0
}
]
]
},
"47e96e87-8ac7-43d7-af6f-b52404be4eec": {
"ai_languageModel": [
[
{
"node": "b2b8f3f6-ef13-47ff-8e6e-4c262b352b2e",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"faf3d158-e625-4829-8e90-2549d747e674": {
"main": [
[
{
"node": "78f32ce2-1e79-4f3e-8561-4a5e07d88696",
"type": "main",
"index": 0
}
]
]
},
"78f32ce2-1e79-4f3e-8561-4a5e07d88696": {
"main": [
[
{
"node": "b2b8f3f6-ef13-47ff-8e6e-4c262b352b2e",
"type": "main",
"index": 0
},
{
"node": "791d5991-0baa-4aff-8dbe-465c1335889f",
"type": "main",
"index": 0
}
]
]
},
"390ebd32-6ce4-4894-9b4f-7b376db5b724": {
"main": [
[
{
"node": "cb7b971d-17a9-4b49-8807-7a9d4f7550d2",
"type": "main",
"index": 0
}
]
]
},
"b2b8f3f6-ef13-47ff-8e6e-4c262b352b2e": {
"main": [
[
{
"node": "6903a767-ab81-4a01-8b98-914afab45c63",
"type": "main",
"index": 0
}
]
]
},
"d125e31f-845b-498e-9b3c-e5e8c14ed166": {
"ai_languageModel": [
[
{
"node": "3738e714-59aa-4b0b-876c-c2f15a1d7479",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"8ba6b208-b4ad-443c-8b24-c51b3b5ad880": {
"ai_languageModel": [
[
{
"node": "6903a767-ab81-4a01-8b98-914afab45c63",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - 人事, 人工知能, マーケティング, IT運用
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
ビング・データとGoogle Geminiを使ってIndeedの企業情報を抽出し、集約
Bright DataとGoogle Geminiを使ってIndeedの企業情報を抽出し、集約する
Set
Markdown
Http Request
+
Set
Markdown
Http Request
15 ノードRanjan Dailata
人事
Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
Bright Data と Google Gemini を使用した LinkedIn から企業ストーリーの生成
Bright DataとGoogle Geminiを使ってLinkedInから企業のストーリー生成
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
営業
Bright Data MCPとGoogle Geminiを使用した法の事例研究抽出ツール、データマイニングツール
Bright Data MCPとGoogle Geminiを使用した法のケーススタディ抽出データマイニングツール
Set
Code
Wait
+
Set
Code
Wait
22 ノードRanjan Dailata
人工知能
WordPress コンテンツジェネレータ v3
WordPress コンテンツジェネレーター v3
If
Set
Code
+
If
Set
Code
102 ノードAlex Kim
人工知能
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他