ビング・データとGemini AIを使ってBing Copilot検索結果を抽出・要約

上級

これはAI分野の自動化ワークフローで、19個のノードを含みます。主にIf, Set, Wait, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Gemini AIとBright Dataを使ってBing Copilot検索性別結果を抽出し、要約する

前提条件
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Gemini API Key

カテゴリー

ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "AnbedV2Ntx97sfed",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Extract & Summarize Bing Copilot Search Results with Gemini AI and Bright Data",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "5f358132-63bd-4c66-80da-4fb9911f607f",
      "name": "ワークフローをクリックしてテスト",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1140,
        400
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "43a157f6-2fb8-4c90-bf5d-92fc64c9df10",
      "name": "Google Gemini チャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "notes": "Gemini Experimental Model",
      "position": [
        760,
        580
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-thinking-exp-01-21"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "f2d34617-ea34-4163-b9d5-a35fed807dbb",
      "name": "デフォルトデータローダー",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        940,
        580
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "707fdb4a-f534-4984-b97d-1839db1afc03",
      "name": "再帰的文字テキストスプリッター",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1040,
        800
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 100
      },
      "typeVersion": 1
    },
    {
      "id": "0440b1dd-ca72-467c-a27a-76609ae08fcf",
      "name": "条件分岐",
      "type": "n8n-nodes-base.if",
      "position": [
        -220,
        400
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "6a7e5360-4cb5-4806-892e-5c85037fa71c",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $('Check Snapshot Status').item.json.status }}",
              "rightValue": "ready"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "a23f3c86-200a-4d3c-a762-51cce158c4dd",
      "name": "スナップショットID設定",
      "type": "n8n-nodes-base.set",
      "position": [
        -700,
        400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2c3369c6-9206-45d7-9349-f577baeaf189",
              "name": "snapshot_id",
              "type": "string",
              "value": "={{ $json.snapshot_id }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "cee238ff-f725-4a24-8117-540be1c66a56",
      "name": "スナップショットダウンロード",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        140,
        200
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/snapshot/{{ $json.snapshot_id }}",
        "options": {
          "timeout": 10000
        },
        "sendQuery": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "format",
              "value": "json"
            }
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "6bb33d11-7176-4dc7-89fe-1ee794793d3e",
      "name": "Google Gemini チャットモデル1",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        380,
        380
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "b2309938-eaaf-4d63-b8c8-53666cd57dac",
      "name": "構造化出力パーサー",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        540,
        380
      ],
      "parameters": {
        "jsonSchemaExample": "[{\n  \"city\": \"string\",\n  \"hotels\": [\n    {\n      \"name\": \"string\",\n      \"address\": \"string\",\n      \"description\": \"string\",\n      \"website\": \"string\",\n      \"area\": \"string (optional)\"\n    }\n  ]\n}\n]\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "747b1e50-1cae-4efb-86d3-9221438701cd",
      "name": "エラー確認",
      "type": "n8n-nodes-base.if",
      "position": [
        -20,
        20
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "b267071c-7102-407b-a98d-f613bcb1a106",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $json.errors.toString() }}",
              "rightValue": "0"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "0bf63795-1f1d-4d6b-90c1-1effae83fd40",
      "name": "付箋ノート",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        80
      ],
      "parameters": {
        "width": 400,
        "height": 220,
        "content": "## Note\n\nDeals with the Bing Copilot Search using the Bright Data Web Scraper API.\n\nThe Basic LLM Chain and summarization is done to demonstrate the usage of the N8N AI capabilities.\n\n**Please make sure to update the Webhook Notification URL**"
      },
      "typeVersion": 1
    },
    {
      "id": "3872fb7a-382a-446d-8cb0-6ac5a282a801",
      "name": "付箋ノート1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -620,
        80
      ],
      "parameters": {
        "width": 420,
        "height": 220,
        "content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nBasic LLM Chain makes use of the Output formatter for formatting the response\n\nSummarization Chain is being used for summarization of the content"
      },
      "typeVersion": 1
    },
    {
      "id": "a1453c72-fef3-4cec-967a-858b28ba31d8",
      "name": "スナップショットステータス確認",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -460,
        400
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/progress/{{ $json.snapshot_id }}",
        "options": {},
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth"
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "5750853b-a07d-455e-b630-977dd733613e",
      "name": "構造化データ抽出器",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        360,
        200
      ],
      "parameters": {
        "text": "=Extract the content as a structured JSON.\n\nHere's the content - {{ $json.answer_text }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are an expert data formatter"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.6
    },
    {
      "id": "a86f935f-fe57-40ea-9197-5f20e3002899",
      "name": "簡潔な要約作成器",
      "type": "@n8n/n8n-nodes-langchain.chainSummarization",
      "position": [
        760,
        200
      ],
      "parameters": {
        "options": {
          "summarizationMethodAndPrompts": {
            "values": {
              "prompt": "=Write a concise summary of the following:\n\n\n{{ $('Download Snapshot').item.json.answer_text }}\n\n",
              "combineMapPrompt": "=Write a concise summary of the following:\n\n\n\n\n\nCONCISE SUMMARY: {{ $('Download Snapshot').item.json.answer_text }}"
            }
          }
        },
        "operationMode": "documentLoader"
      },
      "typeVersion": 2
    },
    {
      "id": "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a",
      "name": "30秒待機",
      "type": "n8n-nodes-base.wait",
      "position": [
        -280,
        660
      ],
      "webhookId": "f2aafd71-61f2-4aa4-8290-fa3bbe3d46b9",
      "parameters": {
        "amount": 30
      },
      "typeVersion": 1.1
    },
    {
      "id": "5467a870-0734-457b-909e-be425a432ebf",
      "name": "構造化データ Webhook 通知器",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        760,
        0
      ],
      "parameters": {
        "url": "https://webhook.site/bc804ce5-4a45-4177-a68a-99c80e5c86e6",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "bf8a4868-ead7-411e-97ba-9faea308d836",
      "name": "要約 Webhook 通知器",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1140,
        200
      ],
      "parameters": {
        "url": "https://webhook.site/bc804ce5-4a45-4177-a68a-99c80e5c86e6",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "60a59b93-9a7c-4d22-ab66-2249fb9ed27e",
      "name": "Bing Copilotリクエスト実行",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -920,
        400
      ],
      "parameters": {
        "url": "https://api.brightdata.com/datasets/v3/trigger",
        "method": "POST",
        "options": {},
        "jsonBody": "[\n  {\n    \"url\": \"https://copilot.microsoft.com/chats\",\n    \"prompt\": \"Top hotels in New York\"\n  }\n]",
        "sendBody": true,
        "sendQuery": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "dataset_id",
              "value": "gd_m7di5jy6s9geokz8w"
            },
            {
              "name": "include_errors",
              "value": "true"
            }
          ]
        },
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "4462ae6e-4ecd-4f64-aad8-4aa9e65982b6",
  "connections": {
    "0440b1dd-ca72-467c-a27a-76609ae08fcf": {
      "main": [
        [
          {
            "node": "747b1e50-1cae-4efb-86d3-9221438701cd",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a23f3c86-200a-4d3c-a762-51cce158c4dd": {
      "main": [
        [
          {
            "node": "a1453c72-fef3-4cec-967a-858b28ba31d8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cee238ff-f725-4a24-8117-540be1c66a56": {
      "main": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "747b1e50-1cae-4efb-86d3-9221438701cd": {
      "main": [
        [
          {
            "node": "cee238ff-f725-4a24-8117-540be1c66a56",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f2d34617-ea34-4163-b9d5-a35fed807dbb": {
      "ai_document": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a": {
      "main": [
        [
          {
            "node": "a1453c72-fef3-4cec-967a-858b28ba31d8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a1453c72-fef3-4cec-967a-858b28ba31d8": {
      "main": [
        [
          {
            "node": "0440b1dd-ca72-467c-a27a-76609ae08fcf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a86f935f-fe57-40ea-9197-5f20e3002899": {
      "main": [
        [
          {
            "node": "bf8a4868-ead7-411e-97ba-9faea308d836",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "43a157f6-2fb8-4c90-bf5d-92fc64c9df10": {
      "ai_languageModel": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "b2309938-eaaf-4d63-b8c8-53666cd57dac": {
      "ai_outputParser": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "6bb33d11-7176-4dc7-89fe-1ee794793d3e": {
      "ai_languageModel": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "5750853b-a07d-455e-b630-977dd733613e": {
      "main": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "main",
            "index": 0
          },
          {
            "node": "5467a870-0734-457b-909e-be425a432ebf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "60a59b93-9a7c-4d22-ab66-2249fb9ed27e": {
      "main": [
        [
          {
            "node": "a23f3c86-200a-4d3c-a762-51cce158c4dd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "707fdb4a-f534-4984-b97d-1839db1afc03": {
      "ai_textSplitter": [
        [
          {
            "node": "f2d34617-ea34-4163-b9d5-a35fed807dbb",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "5f358132-63bd-4c66-80da-4fb9911f607f": {
      "main": [
        [
          {
            "node": "60a59b93-9a7c-4d22-ab66-2249fb9ed27e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - 人工知能

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

関連ワークフロー

Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
Bright Data と Google Gemini を使用した LinkedIn から企業ストーリーの生成
Bright DataとGoogle Geminiを使ってLinkedInから企業のストーリー生成
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
営業
Bright Data、Gemini、Pinecone を使用して LLM 向けに AI 対応のベクトルデータセットを作成
Bright Data、Gemini、Pinecone を使用して LLM 向け AI 就緒のベクトルデータセットを作成
Set
Http Request
Manual Trigger
+
Set
Http Request
Manual Trigger
21 ノードRanjan Dailata
ビルディングブロック
Indeed社データスクレイピングとAirtable、Bright Data、Google Geminiの統合
Airtable、Bright Data、Google Geminiを用いたIndeedデータのスクレイピングと集約
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
人事
ビング・データとGoogle Geminiを使ってYelpの店舗口コミを抽出し、要約
Bright DataとGoogle Geminiを使ってYelpの商家レビューを抽出し、要約する
Set
Merge
Http Request
+
Set
Merge
Http Request
12 ノードRanjan Dailata
人工知能
Bright Data MCPとGoogle Geminiを使用した法の事例研究抽出ツール、データマイニングツール
Bright Data MCPとGoogle Geminiを使用した法のケーススタディ抽出データマイニングツール
Set
Code
Wait
+
Set
Code
Wait
22 ノードRanjan Dailata
人工知能
ワークフロー情報
難易度
上級
ノード数19
カテゴリー1
ノードタイプ12
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34