Linear+Scrapeless+Claudeを活用したAI研究アシスタント
上級
これはMarket Research, AI Chatbot分野の自動化ワークフローで、17個のノードを含みます。主にCode, Linear, Switch, LinearTrigger, Agentなどのノードを使用。 Linear、Scrapeless、Claudeを基盤としたAI研究アシスタント
前提条件
- •Anthropic API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "yTpEZbAAFcS0Yp4m",
"meta": {
"instanceId": "7d291de9dc3bbf0106d65e069919a3de2507e3365a7b25788a79a3562af9bfc5",
"templateCredsSetupCompleted": true
},
"name": "Build an AI-Powered Research Assistant with Linear + Scrapeless + Claude",
"tags": [],
"nodes": [
{
"id": "9137108b-6a96-4264-bb3f-4f0dc5d5c7a5",
"name": "Linear Trigger",
"type": "n8n-nodes-base.linearTrigger",
"position": [
-580,
380
],
"webhookId": "22e62b88-a910-4075-8527-106d75769acd",
"parameters": {
"teamId": "3a89590a-2521-4c4a-b3b2-7e7ad5962666",
"resources": [
"issue",
"comment",
"reaction"
]
},
"credentials": {
"linearApi": {
"id": "glWOH78HS1At4s5K",
"name": "Linear account"
}
},
"typeVersion": 1
},
{
"id": "d49110c2-f5f9-4939-b2a3-4ee7b9c1aa77",
"name": "スイッチ",
"type": "n8n-nodes-base.switch",
"position": [
-360,
260
],
"parameters": {
"mode": "expression",
"output": "={{\n $json.type === 'Issue' && $json.data.title.toLowerCase().includes('/search') ? 0 :\n $json.type === 'Issue' && $json.data.title.toLowerCase().includes('/trends') ? 1 :\n $json.type === 'Issue' && $json.data.title.toLowerCase().includes('/unlock') ? 2 :\n $json.type === 'Issue' && $json.data.title.toLowerCase().includes('/scrape') ? 3 :\n $json.type === 'Issue' && $json.data.title.toLowerCase().includes('/crawl') ? 4 :\n -1\n}}",
"numberOutputs": 5
},
"typeVersion": 3.2
},
{
"id": "627d13f1-1617-4a20-aa1f-2ae8cba643d6",
"name": "Google Search",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
260,
60
],
"parameters": {
"q": "={{ $json.data.title }}"
},
"credentials": {
"scrapelessApi": {
"id": "B73pdQXNjpqNbIhs",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "16d29067-9aae-4159-8d31-37465885350d",
"name": "Google Trends",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
260,
220
],
"parameters": {
"q": "={{ $json.data.title }}",
"operation": "googleTrends"
},
"credentials": {
"scrapelessApi": {
"id": "B73pdQXNjpqNbIhs",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "cadc6292-efcf-4dcf-bc1f-03ea1a6c1a75",
"name": "Web Unlocker",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
260,
360
],
"parameters": {
"url": "={{ $json.data.title.replace(/\\/unlock/gi, '').trim() }}",
"headless": false,
"resource": "universalScrapingApi"
},
"credentials": {
"scrapelessApi": {
"id": "B73pdQXNjpqNbIhs",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "979d5139-2593-4975-afa7-2ac16d8bb5da",
"name": "Scrape",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
260,
540
],
"parameters": {
"url": "={{ $json.data.title }}",
"resource": "crawler"
},
"credentials": {
"scrapelessApi": {
"id": "B73pdQXNjpqNbIhs",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "58658eec-316e-4fb2-8715-6f7efc49d381",
"name": "Crawl",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
260,
700
],
"parameters": {
"url": "={{ $json.data.title }}",
"resource": "crawler",
"operation": "crawl",
"limitCrawlPages": 1
},
"credentials": {
"scrapelessApi": {
"id": "B73pdQXNjpqNbIhs",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "410d82d4-2bdf-4242-b6a3-32e508608be4",
"name": "コード2",
"type": "n8n-nodes-base.code",
"position": [
0,
0
],
"parameters": {
"jsCode": "const originalTitle = $json.data.title;\nlet cleanTitle = originalTitle;\n\nif (originalTitle.toLowerCase().includes('/search')) {\n cleanTitle = originalTitle.replace(/\\/search/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/trends')) {\n cleanTitle = originalTitle.replace(/\\/trends/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/unlock')) {\n cleanTitle = originalTitle.replace(/\\/unlock/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/scrape')) {\n cleanTitle = originalTitle.replace(/\\/scrape/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/crawl')) {\n cleanTitle = originalTitle.replace(/\\/crawl/gi, '').trim();\n}\n\nreturn {\n\n data: {\n ...($json.data),\n title: cleanTitle\n }\n};"
},
"typeVersion": 2
},
{
"id": "8f633954-262b-482d-aa29-3a97a0e8cbb6",
"name": "コード",
"type": "n8n-nodes-base.code",
"position": [
580,
340
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "return {\n output: JSON.stringify($json, null, 2)\n};"
},
"typeVersion": 2
},
{
"id": "d8e55c8c-857b-403e-b2ee-afc1253d7aba",
"name": "コード3",
"type": "n8n-nodes-base.code",
"position": [
0,
180
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "const originalTitle = $json.data.title;\nlet cleanTitle = originalTitle;\n\nif (originalTitle.toLowerCase().includes('/search')) {\n cleanTitle = originalTitle.replace(/\\/search/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/trends')) {\n cleanTitle = originalTitle.replace(/\\/trends/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/unlock')) {\n cleanTitle = originalTitle.replace(/\\/unlock/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/scrape')) {\n cleanTitle = originalTitle.replace(/\\/scrape/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/crawl')) {\n cleanTitle = originalTitle.replace(/\\/crawl/gi, '').trim();\n}\n\nreturn {\n\n data: {\n ...($json.data),\n title: cleanTitle\n }\n};"
},
"typeVersion": 2
},
{
"id": "9e9a315e-6915-41a2-b77c-d46c773b9891",
"name": "コード4",
"type": "n8n-nodes-base.code",
"position": [
20,
360
],
"parameters": {
"jsCode": "const originalTitle = $json.data.title;\nlet cleanTitle = originalTitle;\n\nif (originalTitle.toLowerCase().includes('/search')) {\n cleanTitle = originalTitle.replace(/\\/search/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/trends')) {\n cleanTitle = originalTitle.replace(/\\/trends/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/unlock')) {\n cleanTitle = originalTitle.replace(/\\/unlock/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/scrape')) {\n cleanTitle = originalTitle.replace(/\\/scrape/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/crawl')) {\n cleanTitle = originalTitle.replace(/\\/crawl/gi, '').trim();\n}\n\nreturn {\n\n data: {\n ...($json.data),\n title: cleanTitle\n }\n};"
},
"typeVersion": 2
},
{
"id": "c076a7a6-c901-481d-8037-f1e06be1f8e4",
"name": "コード5",
"type": "n8n-nodes-base.code",
"position": [
20,
520
],
"parameters": {
"jsCode": "const originalTitle = $json.data.title;\nlet cleanTitle = originalTitle;\n\nif (originalTitle.toLowerCase().includes('/search')) {\n cleanTitle = originalTitle.replace(/\\/search/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/trends')) {\n cleanTitle = originalTitle.replace(/\\/trends/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/unlock')) {\n cleanTitle = originalTitle.replace(/\\/unlock/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/scrape')) {\n cleanTitle = originalTitle.replace(/\\/scrape/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/crawl')) {\n cleanTitle = originalTitle.replace(/\\/crawl/gi, '').trim();\n}\n\nreturn {\n\n data: {\n ...($json.data),\n title: cleanTitle\n }\n};"
},
"typeVersion": 2
},
{
"id": "b9e6ac08-8f3c-40cc-b183-a4303d9801cd",
"name": "コード6",
"type": "n8n-nodes-base.code",
"position": [
20,
720
],
"parameters": {
"jsCode": "const originalTitle = $json.data.title;\nlet cleanTitle = originalTitle;\n\nif (originalTitle.toLowerCase().includes('/search')) {\n cleanTitle = originalTitle.replace(/\\/search/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/trends')) {\n cleanTitle = originalTitle.replace(/\\/trends/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/unlock')) {\n cleanTitle = originalTitle.replace(/\\/unlock/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/scrape')) {\n cleanTitle = originalTitle.replace(/\\/scrape/gi, '').trim();\n} else if (originalTitle.toLowerCase().includes('/crawl')) {\n cleanTitle = originalTitle.replace(/\\/crawl/gi, '').trim();\n}\n\nreturn {\n\n data: {\n ...($json.data),\n title: cleanTitle\n }\n};"
},
"typeVersion": 2
},
{
"id": "96631700-d64b-41f7-ba06-263be9acd76e",
"name": "AI エージェント1",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1040,
420
],
"parameters": {
"text": "={{ $json.output }}",
"options": {
"systemMessage": "You are a data analyst. Summarize search/scrape results concisely. Be factual and brief. Format for Linear comments.\n\nAnalyze the provided data and create a structured summary that includes:\n- Key findings and insights\n- Data source and reliability assessment \n- Actionable recommendations\n- Relevant metrics and trends\n- Next steps for further research\n\nFormat your response with clear headers and bullet points for easy reading in Linear."
},
"promptType": "define"
},
"typeVersion": 2
},
{
"id": "300d7264-86df-485a-9183-ed42df732ccc",
"name": "Anthropic チャットモデル1",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
980,
720
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude 4 Sonnet"
},
"options": {
"temperature": 0.3,
"maxTokensToSample": 4000
}
},
"credentials": {
"anthropicApi": {
"id": "21C7G7zPQRFyxp1T",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "20f412e2-4081-40a7-a458-af7b2908cc44",
"name": "コード7",
"type": "n8n-nodes-base.code",
"position": [
1540,
600
],
"parameters": {
"jsCode": "return {\n output: $json.output\n .replace(/\\\\n/g, '\\n')\n .replace(/\\\\\"/g, '\"')\n .replace(/\\\\\\\\/g, '\\\\')\n .trim()\n};"
},
"typeVersion": 2
},
{
"id": "4379cc64-3b20-4ad5-a62b-470da3338cf8",
"name": "Add a comment to an issue1",
"type": "n8n-nodes-base.linear",
"position": [
1760,
600
],
"parameters": {
"comment": "={{ $json.output }}",
"issueId": "={{ $('Linear Trigger').item.json.data.id }}",
"resource": "comment",
"additionalFields": {}
},
"credentials": {
"linearApi": {
"id": "glWOH78HS1At4s5K",
"name": "Linear account"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "e01eaa88-0eff-40de-b80b-51ca1bcd3acb",
"connections": {
"Code": {
"main": [
[
{
"node": "AI Agent1",
"type": "main",
"index": 0
}
]
]
},
"Code2": {
"main": [
[
{
"node": "627d13f1-1617-4a20-aa1f-2ae8cba643d6",
"type": "main",
"index": 0
}
]
]
},
"Code3": {
"main": [
[
{
"node": "16d29067-9aae-4159-8d31-37465885350d",
"type": "main",
"index": 0
}
]
]
},
"Code4": {
"main": [
[
{
"node": "cadc6292-efcf-4dcf-bc1f-03ea1a6c1a75",
"type": "main",
"index": 0
}
]
]
},
"Code5": {
"main": [
[
{
"node": "979d5139-2593-4975-afa7-2ac16d8bb5da",
"type": "main",
"index": 0
}
]
]
},
"Code6": {
"main": [
[
{
"node": "58658eec-316e-4fb2-8715-6f7efc49d381",
"type": "main",
"index": 0
}
]
]
},
"Code7": {
"main": [
[
{
"node": "4379cc64-3b20-4ad5-a62b-470da3338cf8",
"type": "main",
"index": 0
}
]
]
},
"58658eec-316e-4fb2-8715-6f7efc49d381": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"979d5139-2593-4975-afa7-2ac16d8bb5da": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"Switch": {
"main": [
[
{
"node": "Code2",
"type": "main",
"index": 0
}
],
[
{
"node": "Code3",
"type": "main",
"index": 0
}
],
[
{
"node": "Code4",
"type": "main",
"index": 0
}
],
[
{
"node": "Code5",
"type": "main",
"index": 0
}
],
[
{
"node": "Code6",
"type": "main",
"index": 0
}
]
]
},
"AI Agent1": {
"main": [
[
{
"node": "Code7",
"type": "main",
"index": 0
}
]
]
},
"cadc6292-efcf-4dcf-bc1f-03ea1a6c1a75": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"627d13f1-1617-4a20-aa1f-2ae8cba643d6": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"16d29067-9aae-4159-8d31-37465885350d": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"9137108b-6a96-4264-bb3f-4f0dc5d5c7a5": {
"main": [
[
{
"node": "Switch",
"type": "main",
"index": 0
}
]
]
},
"Anthropic Chat Model1": {
"ai_languageModel": [
[
{
"node": "AI Agent1",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - 市場調査, AIチャットボット
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
競合他社との比較カードの自動生成とリアルタイムの販売インテリジェンス
AI、Slack、Notionを使って自動のに競合比較カード(Klueの代替案)を生成する
Code
Merge
Slack
+
Code
Merge
Slack
58 ノードConnor Provines
市場調査
ウェブサイトのトラフィックを向上させる
Claude AI、Scrapelessと競合分析による自動SEOコンテンツエンジン
Set
Code
Filter
+
Set
Code
Filter
26 ノードscrapeless official
コンテンツ作成
不動産物件情報抽出の自動化
ScrapelessとGoogleスプレッドシートで不動産物件のクロールを自動化する
Code
Google Sheets
Schedule Trigger
+
Code
Google Sheets
Schedule Trigger
7 ノードscrapeless official
市場調査
Gmail からの自動返信と Linear チケット作成(GPT-5、gotoHuman、人間審査使用)
Gmailから自動返信し、Linearチケットを作成するためにGPT-5、gotoHuman、および人間の承認を使用
Set
Code
Gmail
+
Set
Code
Gmail
37 ノードgotoHuman
チケット管理
Go High Level で Redis と Anthropic を使ってWhatsApp への返信を自動化
Go High Level、Redis、Anthropicを使ってWhatsAppの回答を自動化する
If
Set
Code
+
If
Set
Code
31 ノードJorge Martínez
AIチャットボット
AI駆動型SEOブログライター
Gemini、Scrapeless、Pinecone RAGを使ってSEO最適化されたブログコンテンツを生成する
Set
Code
Html
+
Set
Code
Html
28 ノードscrapeless official
コンテンツ作成
ワークフロー情報
難易度
上級
ノード数17
カテゴリー2
ノードタイプ7
作成者
scrapeless official
@scrapelessofficial外部リンク
n8n.ioで表示 →
このワークフローを共有