8
n8n 한국어amn8n.com

OpenRouter를 사용하는 자동화 AI 라우팅

중급

이것은Engineering, Building Blocks, AI, IT Ops분야의자동화 워크플로우로, 7개의 노드를 포함합니다.주로 Agent, ChatTrigger, LmChatOpenRouter, OutputParserStructured 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. OpenRouter를 통해 쿼리 최적화 동적 AI 모델 라우팅

사전 요구사항
  • AI 서비스 API Key(예: OpenAI, Anthropic 등)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "id": "uNLWQ7BSozpoehpU",
  "meta": {
    "instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
    "templateCredsSetupCompleted": true
  },
  "name": "Automated AI Routing with OpenRouter",
  "tags": [],
  "nodes": [
    {
      "id": "25903a04-24d2-41f9-bf34-5d6234e642e5",
      "name": "채팅 메시지 수신 시",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -180,
        -180
      ],
      "webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "fabffdee-3c1e-47db-a4e9-f6473a6e9257",
      "name": "OpenRouter Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        0,
        40
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "pb06rfB4xmxzVe3Q",
          "name": "OpenRouter"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c53fe672-92cb-4d88-b4f6-f413fb00ad6a",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        220,
        40
      ],
      "parameters": {
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "d60a9d61-c611-4813-bf85-e8f8faaa21b6",
      "name": "OpenRouter Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        380,
        40
      ],
      "parameters": {
        "model": "={{ $json.output.model }}",
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "pb06rfB4xmxzVe3Q",
          "name": "OpenRouter"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ef9ceacb-55e4-4795-aa18-976997ec3717",
      "name": "스티키 노트",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -180,
        -420
      ],
      "parameters": {
        "width": 840,
        "height": 180,
        "content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (LLM) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
      },
      "typeVersion": 1
    },
    {
      "id": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
      "name": "라우팅 에이전트",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        40,
        -180
      ],
      "parameters": {
        "options": {
          "systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **perplexity/sonar**\n2. **openai/gpt-4o-mini**\n3. **anthropic/claude-3.7-sonnet**\n4. **meta-llama/llama-3-70b-instruct**\n5. **google/gemini-2.5-pro-preview**\n6. **qwen/qwen-qwq-32b**\n7. **openai/codex-mini**\n8. **openai/o1-pro**\n\n## Model Strengths\n\n### 1. perplexity/sonar\n- Built-in web search capability\n- Provides citations and customizable sources\n- Ideal for retrieving live, up-to-date information from the web\n\n### 2. openai/gpt-4o-mini\n- Cost-efficient language model optimized for advanced reasoning tasks\n- Excels in science and mathematics\n- Best suited for problems requiring careful, well-thought-out responses involving multiple variables or connections\n\n### 3. anthropic/claude-3.7-sonnet\n- High proficiency in coding tasks, scoring ~94% on SWE-Bench Verified\n- Enhances data science expertise by navigating unstructured data and utilizing multiple tools for insights\n- Handles very long documents and maintains coherence over extended conversations or analyses\n- Performs well in creative writing tasks such as storytelling, dialogue generation, and summarization\n- Tends to produce responses that are more aligned with safety and ethical guidelines\n\n### 4. meta-llama/llama-3-70b-instruct\n- Strong performance in coding and reasoning tasks\n- Suitable for complex programming and technical problem-solving\n- Supports long context windows, making it ideal for extended analyses\n\n### 5. google/gemini-2.5-pro-preview\n- Advanced multimodal capabilities, handling both text and images\n- Excels in tasks requiring integration of visual and textual information\n- Ideal for complex problem-solving involving diverse data types\n\n### 6. qwen/qwen-qwq-32b\n- Specialized in reasoning and problem-solving tasks\n- Effective in handling logical puzzles and complex analytical queries\n\n### 7. openai/codex-mini\n- Optimized for code generation and completion tasks\n- Suitable for lightweight coding tasks and quick code snippets\n\n### 8. openai/o1-pro\n- Designed for complex reasoning with enhanced computational resources\n- Performs well in STEM-related tasks, including physics, chemistry, and biology\n- Capable of handling large context windows, making it suitable for in-depth analyses\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n  \"prompt\": \"user query goes here\",\n  \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: perplexity/sonar, openai/gpt-4o-mini, anthropic/claude-3.7-sonnet, meta-llama/llama-3-70b-instruct, google/gemini-2.5-pro-preview, qwen/qwen-qwq-32b, openai/codex-mini, openai/o1-pro).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
        },
        "hasOutputParser": true
      },
      "typeVersion": 1.9
    },
    {
      "id": "94c49c22-9697-4230-ba35-5159041cfdc7",
      "name": "AI 에이전트",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        400,
        -180
      ],
      "parameters": {
        "text": "={{ $json.output.prompt }}",
        "options": {},
        "promptType": "define"
      },
      "typeVersion": 1.9
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "f1562281-3e44-4f7d-a585-90c54a65e888",
  "connections": {
    "4d688ad7-b463-4e72-9b79-4b9142f022d2": {
      "main": [
        [
          {
            "node": "94c49c22-9697-4230-ba35-5159041cfdc7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fabffdee-3c1e-47db-a4e9-f6473a6e9257": {
      "ai_languageModel": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "d60a9d61-c611-4813-bf85-e8f8faaa21b6": {
      "ai_languageModel": [
        [
          {
            "node": "94c49c22-9697-4230-ba35-5159041cfdc7",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "c53fe672-92cb-4d88-b4f6-f413fb00ad6a": {
      "ai_outputParser": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "25903a04-24d2-41f9-bf34-5d6234e642e5": {
      "main": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

중급 - 엔지니어링, 빌딩 블록, 인공지능, IT 운영

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
중급
노드 수7
카테고리4
노드 유형5
난이도 설명

일정 경험을 가진 사용자를 위한 6-15개 노드의 중간 복잡도 워크플로우

저자

Full-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34