프록시 AI Anthropic Opus 4 및 Sonnet 4
중급
이것은Engineering, AI분야의자동화 워크플로우로, 11개의 노드를 포함합니다.주로 Agent, HttpRequestTool, ToolThink, ChatTrigger, ToolCalculator 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. Anthropic AI 에이전트: Claude Sonnet 4 및 Opus 4, 사고 및 웹 검색 도구 보유
사전 요구사항
- •대상 API의 인증 정보가 필요할 수 있음
- •Anthropic API Key
사용된 노드 (11)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"id": "qjLD1os0l5ISHRFO",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "Agent AI Anthropic Opus 4 and Sonnet 4",
"tags": [],
"nodes": [
{
"id": "4f01cd9b-16b6-4b6a-a55b-64531e867dcc",
"name": "채팅 메시지 수신 시",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
20,
60
],
"webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "c0a5e6b1-9c43-4f92-884e-95b1e91ff54a",
"name": "구조화된 출력 파서",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
420,
280
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
},
"typeVersion": 1.2
},
{
"id": "e46a6a64-8875-44f0-830e-febebaa10dd7",
"name": "스티커 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
20,
-180
],
"parameters": {
"width": 840,
"height": 180,
"content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **New Anthropic Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (Anthropic Sonnet 4 or Opus 4) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
},
"typeVersion": 1
},
{
"id": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"name": "AI 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
600,
60
],
"parameters": {
"text": "={{ $json.output.prompt }}",
"options": {
"systemMessage": "=You have access to a web_search tool that allows you to browse the internet for up-to-date information. Here's how you should operate:\n\n1. Website Information:\nFamiliarize yourself with this information about the website you're assisting. Use this as context for user interactions.\n\n2. Web Search Tool:\nYou have access to a web_search tool that can browse the internet. To use it, write the variable {web_search_question}. The tool will return relevant search results. Set the variable {model} to {{ $json.output.model }}.\n\n3. Handling User Queries:\nWhen a user asks a question, follow these steps:\na) Analyze the query to determine if it's related to the website or requires external information.\nb) If the query is about the website, use the provided website information to answer.\nc) If external information is needed, use the web_search tool to find relevant data.\n\n4. Using web_search:\n- Use web_search for factual, current information that isn't provided in the website info.\n- Formulate clear, concise search queries.\n- If the first search doesn't yield useful results, refine your query and search again.\n- Limit searches to a maximum of three per user query to maintain efficiency.\n\n5. Using Think:\n- Using Think tool to think about something. It will not obtain new information or change the database, but just append the thought to the log. Use it when complex reasoning or some cache memory is needed.\n\n6. Formulating Responses:\n- Begin with information from the website if relevant.\n- Incorporate web search results to provide up-to-date, accurate information.\n- Summarize findings concisely and coherently.\n- If you're unsure or can't find reliable information, be honest about limitations.\n\n7. Ethical Considerations:\n- Respect user privacy. Don't ask for or store personal information.\n- Provide factual information. Avoid speculation or unverified claims.\n- If asked about controversial topics, strive for a balanced, neutral response.\n- Don't engage in or encourage illegal activities.\n\n8. Output Format:\nDo not include your thought process, web searches, or any other tags in the final output.\n"
},
"promptType": "define"
},
"typeVersion": 1.9
},
{
"id": "0e08600f-f35c-408a-9b8a-f886aeea37d6",
"name": "사고",
"type": "@n8n/n8n-nodes-langchain.toolThink",
"position": [
800,
280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "5adf09be-e278-49f0-bb66-d7e3d265b120",
"name": "계산기",
"type": "@n8n/n8n-nodes-langchain.toolCalculator",
"position": [
900,
280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"name": "Anthropic 라우팅 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
240,
60
],
"parameters": {
"options": {
"systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **claude-sonnet-4-20250514**\n2. **claude-opus-4-20250514**\n\n## Model Strengths\n\n### 1. claude-sonnet-4-20250514\n- Standard decision-making tasks\n- Real-time workflow routing\n- Data validation and processing\n- Pattern recognition in structured data\n- Routine business logic evaluation\n\n### 2. claude-sonnet-4-20250514\n- Complex multi-factor decision scenarios\n- Advanced data analysis requiring deep reasoning\n- Critical business decisions with high impact\n- Complex pattern recognition in unstructured data\n- Strategic workflow optimization\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n \"prompt\": \"user query goes here\",\n \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: claude-sonnet-4-20250514, claude-opus-4-20250514).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
},
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "0f358356-37d4-4693-a694-382a8bc1b20f",
"name": "Sonnet 4 또는 Opus 4",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
600,
280
],
"parameters": {
"model": {
"__rl": true,
"mode": "id",
"value": "={{ $json.output.model }}"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "c92104a6-9aa4-4a55-84b1-484df25f83ac",
"name": "Sonnet 3.7",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
220,
280
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-3-7-sonnet-20250219",
"cachedResultName": "Claude Sonnet 3.7"
},
"options": {
"maxTokensToSample": 1024
}
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "513642ef-b4d6-46fc-8542-319dd54271f8",
"name": "단순 메모리1",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
720,
280
],
"parameters": {
"sessionKey": "={{ $('When chat message received').item.json.sessionId }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "6c81dcd9-7faf-4b34-8e78-a471de80fa1e",
"name": "웹_검색",
"type": "n8n-nodes-base.httpRequestTool",
"position": [
1020,
280
],
"parameters": {
"url": "https://api.anthropic.com/v1/messages",
"method": "POST",
"options": {},
"jsonBody": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('JSON', `{\n \"model\": \"{model}\",\n \"max_tokens\": 1024,\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{web_search_question}\"\n }\n ],\n \"tools\": [\n {\n \"type\": \"web_search_20250305\",\n \"name\": \"web_search\",\n \"max_uses\": 5\n }\n ]\n}\n`, 'json') }}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"toolDescription": "Use this tool to search on the web",
"headerParameters": {
"parameters": [
{
"name": "anthropic-version",
"value": "=2023-06-01"
},
{
"name": "content-type",
"value": "application/json"
}
]
},
"nodeCredentialType": "anthropicApi"
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c0947a41-be77-4ac0-89e2-eb8cf04b7c48",
"connections": {
"0e08600f-f35c-408a-9b8a-f886aeea37d6": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"5adf09be-e278-49f0-bb66-d7e3d265b120": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"c92104a6-9aa4-4a55-84b1-484df25f83ac": {
"ai_languageModel": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"6c81dcd9-7faf-4b34-8e78-a471de80fa1e": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"513642ef-b4d6-46fc-8542-319dd54271f8": {
"ai_memory": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_memory",
"index": 0
}
]
]
},
"0f358356-37d4-4693-a694-382a8bc1b20f": {
"ai_languageModel": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d5fa04bf-e40b-41d7-9d48-c71cd7ced93f": {
"main": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "main",
"index": 0
}
]
]
},
"c0a5e6b1-9c43-4f92-884e-95b1e91ff54a": {
"ai_outputParser": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"4f01cd9b-16b6-4b6a-a55b-64531e867dcc": {
"main": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
중급 - 엔지니어링, 인공지능
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
Claude 3.7 Sonnet AI 대리인(네트워크 검색 및 사고 기능)
Anthropic 네트워크 검색 및 사고 기능을 갖춘 Claude 3.7 Sonnet AI 채팅 로봇 대리인
Agent
Http Request Tool
Tool Think
+
Agent
Http Request Tool
Tool Think
7 노드Davide
빌딩 블록
OpenRouter를 사용하는 자동화 AI 라우팅
OpenRouter를 통해 쿼리 최적화 동적 AI 모델 라우팅
Agent
Chat Trigger
Lm Chat Open Router
+
Agent
Chat Trigger
Lm Chat Open Router
7 노드Davide
엔지니어링
첫 번째 AI 에이전트 만들기 – 구글 제미니 지원 및 기억 기능
🤖 첫 번째 AI 에이전트 만들기 – Google 제미니 지원 및 기억 기능
Agent
Tool Think
Chat Trigger
+
Agent
Tool Think
Chat Trigger
13 노드DigiMetaLab
엔지니어링
데이터와 대화: 텍스트를 SQL 쿼리 및 시각화 곡선으로 변환
데이터와 대화: 텍스트를 SQL 쿼리 및 시각화 곡선으로 변환
If
Set
Merge
+
If
Set
Merge
36 노드hippolyte-hu
엔지니어링
평가 지표 예시:툴이 호출되었는지 확인
평가 지표 예시: 도구 호출 여부 확인
Set
Evaluation
Agent
+
Set
Evaluation
Agent
15 노드David Roberts
엔지니어링
n8n 채팅 로봇에 Langflow 프로세스를 가져오고 브랜드 맞춤화
Langflow 백엔드와 커스터마이즈드 브랜드로 AI 추동된 웹 채팅 로봇 생성
Set
Http Request
Chat Trigger
+
Set
Http Request
Chat Trigger
7 노드Davide
엔지니어링
워크플로우 정보
난이도
중급
노드 수11
카테고리2
노드 유형9
저자
Davide
@n3witaliaFull-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza
외부 링크
n8n.io에서 보기 →
이 워크플로우 공유