Extraction et résumé des résultats de recherche Bing Copilot via Gemini AI et Bright Data

Avancé

Ceci est unAIworkflow d'automatisation du domainecontenant 19 nœuds.Utilise principalement des nœuds comme If, Set, Wait, HttpRequest, ManualTrigger, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Extraire et résumer les résultats de recherche Bing Copilot avec Gemini AI et Bright Data

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API Google Gemini
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "AnbedV2Ntx97sfed",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Extract & Summarize Bing Copilot Search Results with Gemini AI and Bright Data",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "5f358132-63bd-4c66-80da-4fb9911f607f",
      "name": "Lors du clic sur 'Tester le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1140,
        400
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "43a157f6-2fb8-4c90-bf5d-92fc64c9df10",
      "name": "Google Gemini Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "notes": "Gemini Experimental Model",
      "position": [
        760,
        580
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-thinking-exp-01-21"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "f2d34617-ea34-4163-b9d5-a35fed807dbb",
      "name": "Chargeur de données par défaut",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        940,
        580
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "707fdb4a-f534-4984-b97d-1839db1afc03",
      "name": "Séparateur de texte récursif",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1040,
        800
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 100
      },
      "typeVersion": 1
    },
    {
      "id": "0440b1dd-ca72-467c-a27a-76609ae08fcf",
      "name": "Si",
      "type": "n8n-nodes-base.if",
      "position": [
        -220,
        400
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "6a7e5360-4cb5-4806-892e-5c85037fa71c",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $('Check Snapshot Status').item.json.status }}",
              "rightValue": "ready"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "a23f3c86-200a-4d3c-a762-51cce158c4dd",
      "name": "Définir l'ID de l'instantané",
      "type": "n8n-nodes-base.set",
      "position": [
        -700,
        400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2c3369c6-9206-45d7-9349-f577baeaf189",
              "name": "snapshot_id",
              "type": "string",
              "value": "={{ $json.snapshot_id }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "cee238ff-f725-4a24-8117-540be1c66a56",
      "name": "Télécharger l'instantané",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        140,
        200
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/snapshot/{{ $json.snapshot_id }}",
        "options": {
          "timeout": 10000
        },
        "sendQuery": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "format",
              "value": "json"
            }
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "6bb33d11-7176-4dc7-89fe-1ee794793d3e",
      "name": "Google Gemini Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        380,
        380
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "b2309938-eaaf-4d63-b8c8-53666cd57dac",
      "name": "Analyseur de sortie structurée",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        540,
        380
      ],
      "parameters": {
        "jsonSchemaExample": "[{\n  \"city\": \"string\",\n  \"hotels\": [\n    {\n      \"name\": \"string\",\n      \"address\": \"string\",\n      \"description\": \"string\",\n      \"website\": \"string\",\n      \"area\": \"string (optional)\"\n    }\n  ]\n}\n]\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "747b1e50-1cae-4efb-86d3-9221438701cd",
      "name": "Vérifier les erreurs",
      "type": "n8n-nodes-base.if",
      "position": [
        -20,
        20
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "b267071c-7102-407b-a98d-f613bcb1a106",
              "operator": {
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $json.errors.toString() }}",
              "rightValue": "0"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "0bf63795-1f1d-4d6b-90c1-1effae83fd40",
      "name": "Note autocollante",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        80
      ],
      "parameters": {
        "width": 400,
        "height": 220,
        "content": "## Note\n\nDeals with the Bing Copilot Search using the Bright Data Web Scraper API.\n\nThe Basic LLM Chain and summarization is done to demonstrate the usage of the N8N AI capabilities.\n\n**Please make sure to update the Webhook Notification URL**"
      },
      "typeVersion": 1
    },
    {
      "id": "3872fb7a-382a-446d-8cb0-6ac5a282a801",
      "name": "Note autocollante1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -620,
        80
      ],
      "parameters": {
        "width": 420,
        "height": 220,
        "content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nBasic LLM Chain makes use of the Output formatter for formatting the response\n\nSummarization Chain is being used for summarization of the content"
      },
      "typeVersion": 1
    },
    {
      "id": "a1453c72-fef3-4cec-967a-858b28ba31d8",
      "name": "Vérifier l'état de l'instantané",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -460,
        400
      ],
      "parameters": {
        "url": "=https://api.brightdata.com/datasets/v3/progress/{{ $json.snapshot_id }}",
        "options": {},
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth"
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "5750853b-a07d-455e-b630-977dd733613e",
      "name": "Extracteur de données structurées",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        360,
        200
      ],
      "parameters": {
        "text": "=Extract the content as a structured JSON.\n\nHere's the content - {{ $json.answer_text }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are an expert data formatter"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.6
    },
    {
      "id": "a86f935f-fe57-40ea-9197-5f20e3002899",
      "name": "Créateur de synthèse concise",
      "type": "@n8n/n8n-nodes-langchain.chainSummarization",
      "position": [
        760,
        200
      ],
      "parameters": {
        "options": {
          "summarizationMethodAndPrompts": {
            "values": {
              "prompt": "=Write a concise summary of the following:\n\n\n{{ $('Download Snapshot').item.json.answer_text }}\n\n",
              "combineMapPrompt": "=Write a concise summary of the following:\n\n\n\n\n\nCONCISE SUMMARY: {{ $('Download Snapshot').item.json.answer_text }}"
            }
          }
        },
        "operationMode": "documentLoader"
      },
      "typeVersion": 2
    },
    {
      "id": "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a",
      "name": "Attendre 30 secondes",
      "type": "n8n-nodes-base.wait",
      "position": [
        -280,
        660
      ],
      "webhookId": "f2aafd71-61f2-4aa4-8290-fa3bbe3d46b9",
      "parameters": {
        "amount": 30
      },
      "typeVersion": 1.1
    },
    {
      "id": "5467a870-0734-457b-909e-be425a432ebf",
      "name": "Notificateur de données structurées Webhook",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        760,
        0
      ],
      "parameters": {
        "url": "https://webhook.site/bc804ce5-4a45-4177-a68a-99c80e5c86e6",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "bf8a4868-ead7-411e-97ba-9faea308d836",
      "name": "Notificateur de synthèse Webhook",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1140,
        200
      ],
      "parameters": {
        "url": "https://webhook.site/bc804ce5-4a45-4177-a68a-99c80e5c86e6",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "response",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "60a59b93-9a7c-4d22-ab66-2249fb9ed27e",
      "name": "Effectuer une requête Bing Copilot",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -920,
        400
      ],
      "parameters": {
        "url": "https://api.brightdata.com/datasets/v3/trigger",
        "method": "POST",
        "options": {},
        "jsonBody": "[\n  {\n    \"url\": \"https://copilot.microsoft.com/chats\",\n    \"prompt\": \"Top hotels in New York\"\n  }\n]",
        "sendBody": true,
        "sendQuery": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "dataset_id",
              "value": "gd_m7di5jy6s9geokz8w"
            },
            {
              "name": "include_errors",
              "value": "true"
            }
          ]
        },
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "4462ae6e-4ecd-4f64-aad8-4aa9e65982b6",
  "connections": {
    "0440b1dd-ca72-467c-a27a-76609ae08fcf": {
      "main": [
        [
          {
            "node": "747b1e50-1cae-4efb-86d3-9221438701cd",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a23f3c86-200a-4d3c-a762-51cce158c4dd": {
      "main": [
        [
          {
            "node": "a1453c72-fef3-4cec-967a-858b28ba31d8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cee238ff-f725-4a24-8117-540be1c66a56": {
      "main": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "747b1e50-1cae-4efb-86d3-9221438701cd": {
      "main": [
        [
          {
            "node": "cee238ff-f725-4a24-8117-540be1c66a56",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f2d34617-ea34-4163-b9d5-a35fed807dbb": {
      "ai_document": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "848ce4b1-0aed-4af2-bf55-bcdb30bbc88a": {
      "main": [
        [
          {
            "node": "a1453c72-fef3-4cec-967a-858b28ba31d8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a1453c72-fef3-4cec-967a-858b28ba31d8": {
      "main": [
        [
          {
            "node": "0440b1dd-ca72-467c-a27a-76609ae08fcf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a86f935f-fe57-40ea-9197-5f20e3002899": {
      "main": [
        [
          {
            "node": "bf8a4868-ead7-411e-97ba-9faea308d836",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "43a157f6-2fb8-4c90-bf5d-92fc64c9df10": {
      "ai_languageModel": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "b2309938-eaaf-4d63-b8c8-53666cd57dac": {
      "ai_outputParser": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "6bb33d11-7176-4dc7-89fe-1ee794793d3e": {
      "ai_languageModel": [
        [
          {
            "node": "5750853b-a07d-455e-b630-977dd733613e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "5750853b-a07d-455e-b630-977dd733613e": {
      "main": [
        [
          {
            "node": "a86f935f-fe57-40ea-9197-5f20e3002899",
            "type": "main",
            "index": 0
          },
          {
            "node": "5467a870-0734-457b-909e-be425a432ebf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "60a59b93-9a7c-4d22-ab66-2249fb9ed27e": {
      "main": [
        [
          {
            "node": "a23f3c86-200a-4d3c-a762-51cce158c4dd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "707fdb4a-f534-4984-b97d-1839db1afc03": {
      "ai_textSplitter": [
        [
          {
            "node": "f2d34617-ea34-4163-b9d5-a35fed807dbb",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "5f358132-63bd-4c66-80da-4fb9911f607f": {
      "main": [
        [
          {
            "node": "60a59b93-9a7c-4d22-ab66-2249fb9ed27e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Intelligence Artificielle

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Extraction, résumé et analyse des baisses de prix des produits Amazon avec Bright Data
utilisationBright DataetGoogle Geminiextraction、总结etanalyse亚马逊降价信息
Set
Wait
Merge
+
Set
Wait
Merge
26 NœudsRanjan Dailata
Intelligence Artificielle
Génération de récits d'entreprise à partir de LinkedIn avec Bright Data et Google Gemini
Utiliser Bright Data et Google Gemini pour générer l'histoire d'une entreprise à partir de LinkedIn
If
Set
Wait
+
If
Set
Wait
19 NœudsRanjan Dailata
Ventes
Créer un ensemble de données vectoriel prêt pour l'IA pour les LLM à l'aide de Bright Data, Gemini et Pinecone
Créer des jeux de données vectoriels prêts pour l'IA pour les LLM avec Bright Data, Gemini et Pinecone
Set
Http Request
Manual Trigger
+
Set
Http Request
Manual Trigger
21 NœudsRanjan Dailata
Blocs de construction
Scraping des données d'entreprises Indeed et agrégation avec Airtable, Bright Data et Google Gemini
Extraction et résumé de données Indeed avec Airtable, Bright Data et Google Gemini
If
Set
Wait
+
If
Set
Wait
19 NœudsRanjan Dailata
Ressources Humaines
Extraction et résumé des avis de commerçants Yelp via Bright Data et Google Gemini
Extraire et résumer les avis de commerçants Yelp avec Bright Data et Google Gemini
Set
Merge
Http Request
+
Set
Merge
Http Request
12 NœudsRanjan Dailata
Intelligence Artificielle
Extracteur d'études de cas juridiques, Mineur de données avec Bright Data MCP et Google Gemini
Extracteur d'études de cas juridiques, mineur de données utilisant Bright Data MCP et Google Gemini
Set
Code
Wait
+
Set
Code
Wait
22 NœudsRanjan Dailata
Intelligence Artificielle
Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds19
Catégorie1
Types de nœuds12
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34