Extracteur d'études de cas juridiques, Mineur de données avec Bright Data MCP et Google Gemini

Avancé

Ceci est unAI, IT Opsworkflow d'automatisation du domainecontenant 22 nœuds.Utilise principalement des nœuds comme Set, Code, Wait, Function, McpClient, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Extracteur d'études de cas juridiques, mineur de données utilisant Bright Data MCP et Google Gemini

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API Google Gemini
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "Qgx75aQeRKXKtqm7",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Legal Case Research Extractor, Data Miner with Bright Data MCP & Google Gemini",
  "tags": [
    {
      "id": "ZOwtAMLepQaGW76t",
      "name": "Building Blocks",
      "createdAt": "2025-04-13T15:23:40.462Z",
      "updatedAt": "2025-04-13T15:23:40.462Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "9e9a27ce-b95c-4ecd-b3c4-97aba420ce45",
      "name": "Lors du clic sur 'Tester le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -520,
        140
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "3f9e30b5-7eb3-454d-a831-07be51f7a326",
      "name": "Note autocollante",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        40
      ],
      "parameters": {
        "color": 4,
        "width": 440,
        "height": 320,
        "content": "## Bright Data Legal Case Research Scraper"
      },
      "typeVersion": 1
    },
    {
      "id": "8f1934bf-ccec-4b25-b6cc-7607dcbdf798",
      "name": "Lister tous les outils pour Bright Data",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        -300,
        140
      ],
      "parameters": {},
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f8c4804a-85ad-462c-913d-e0bc5242bc74",
      "name": "Créer des données binaires pour l'extraction d'informations de l'entreprise LinkedIn",
      "type": "n8n-nodes-base.function",
      "position": [
        2440,
        60
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "c616db9f-fcf3-4f9d-b60f-a16c9da89456",
      "name": "Note autocollante2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        -180
      ],
      "parameters": {
        "width": 440,
        "height": 120,
        "content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
      },
      "typeVersion": 1
    },
    {
      "id": "048c1093-ea88-441c-98fa-a2d003ab6b8d",
      "name": "Définir l'URL de Recherche de Cas Juridique",
      "type": "n8n-nodes-base.set",
      "position": [
        -20,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "214e61a0-3587-453f-baf5-eac013990857",
              "name": "url",
              "type": "string",
              "value": "https://www.courtlistener.com/?q=IT%20laws%20for%20cyber%20crime&type=o&order_by=dateFiled%20desc&stat_Published=on"
            },
            {
              "id": "45014942-0a2e-4f46-b395-f82f97bfa93e",
              "name": "webhook_url",
              "type": "string",
              "value": "https://webhook.site/7b5380a0-0544-48dc-be43-0116cb2d52c2"
            },
            {
              "id": "bf011e1f-7032-49db-8f25-31ec4c35b9c5",
              "name": "base_url",
              "type": "string",
              "value": "https://www.courtlistener.com"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9",
      "name": "Client MCP Bright Data pour la Recherche de Cas Juridique",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        200,
        140
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $json.url }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "f3ea0d19-703b-4f99-955c-122162065363",
      "name": "Extracteur de Cas",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        600,
        140
      ],
      "parameters": {
        "text": "=Extract the content in a structured format. Here's the content : {{ $json.result.content[0].text }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are an expert structured data extractor"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "a3fe5ce7-3a91-459d-8ef8-17a06fbef12a",
      "name": "Analyseur de Sortie Structurée",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        800,
        360
      ],
      "parameters": {
        "jsonSchemaExample": "[{\n\"Id\": \"\",\n\"Link\" : \"\",\n\"Title\": \n\"United States v. IXCOLGONZALEZ\"\n}]"
      },
      "typeVersion": 1.2
    },
    {
      "id": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
      "name": "Boucle sur les Éléments",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1320,
        140
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "74a02ac0-859d-4611-aeb0-021a654c92b8",
      "name": "Client MCP Bright Data pour la Recherche de Cas Juridique dans la Boucle",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        1860,
        160
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $('Set the Legal Case Research URL').item.json.base_url }}/{{ $json.Link }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "beb67c30-dd39-4c7d-94f8-853410dec09b",
      "name": "Extraction de Données Textuelles depuis HTML dans la Boucle",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2080,
        160
      ],
      "parameters": {
        "text": "=Extract html to textual content  {{ $json.result.content[0].text }}",
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "b7fc74e5-4165-4b1a-9c0a-27565302c0e1",
      "name": "Notification Webhook pour l'Extraction de Données Textuelles depuis HTML dans la Boucle",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2440,
        260
      ],
      "parameters": {
        "url": "={{ $('Set the Legal Case Research URL').item.json.webhook_url }}",
        "options": {},
        "sendBody": true,
        "contentType": "multipart-form-data",
        "bodyParameters": {
          "parameters": [
            {
              "name": "case_content",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "07b78de1-fdc8-4233-a231-37258fa5d1f0",
      "name": "Écrire le contenu du cas sur le disque",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2700,
        60
      ],
      "parameters": {
        "options": {},
        "fileName": "=d:\\Case-{{ $('Loop Over Items').item.json['Id'] }}.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "ff687082-9e3d-4043-9aa6-29e3029499d4",
      "name": "Modèle de Chat Google Gemini pour l'Extraction de Données de Cas",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        580,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0057d772-732e-4e47-8ab8-eebe140df692",
      "name": "Code pour sortir la collection de cas",
      "type": "n8n-nodes-base.code",
      "position": [
        980,
        140
      ],
      "parameters": {
        "jsCode": "\nreturn $input.first().json.output"
      },
      "typeVersion": 2
    },
    {
      "id": "c843170b-e360-4eea-853c-ef38c9f3affe",
      "name": "Modèle de Chat Google Gemini pour l'Extraction de Données Textuelles depuis HTML dans la Boucle",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2100,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "90f4670a-1fca-4826-9017-64a31f29cbc2",
      "name": "Note autocollante1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        0
      ],
      "parameters": {
        "color": 5,
        "width": 1660,
        "height": 520,
        "content": "## Bright Data Legal Case Research Scraper\n\nLoop through and perform the data extraction using MCP and LLMs"
      },
      "typeVersion": 1
    },
    {
      "id": "58aac68b-2598-465b-ab3c-f5c0ebcdb595",
      "name": "Note autocollante4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        -260
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 220,
        "content": "## LLM Usages\n\nOpenAI 4o mini LLM is being utilized for the structured data extraction handling."
      },
      "typeVersion": 1
    },
    {
      "id": "14bbbc73-06cd-4513-b9e6-2aebb5009c3d",
      "name": "Note autocollante5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -860
      ],
      "parameters": {
        "color": 7,
        "width": 400,
        "height": 400,
        "content": "## Logo\n\n\n![logo](https://images.seeklogo.com/logo-png/43/1/brightdata-logo-png_seeklogo-439974.png)\n"
      },
      "typeVersion": 1
    },
    {
      "id": "96d74c50-074e-4b83-9422-ff2ce56bd55d",
      "name": "Note autocollante3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -360
      ],
      "parameters": {
        "width": 400,
        "height": 320,
        "content": "## Note\n\nDeals with the Legal Case data extraction by utilizing the Bright Data MCP and OpenAI GPT 4o LLM.\n\n**Please make sure to set the input fields node with the Legal case URL\n\nPlease make sure to update the Webhook Notification URL of your interest**"
      },
      "typeVersion": 1
    },
    {
      "id": "08c6a217-5773-4ebc-ba6e-326de99e90e5",
      "name": "Attente",
      "type": "n8n-nodes-base.wait",
      "position": [
        1580,
        160
      ],
      "webhookId": "65c9fcd3-2c82-4bdd-80b6-271d65b7f61a",
      "parameters": {
        "amount": 10
      },
      "typeVersion": 1.1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "03af01f8-7276-4c3c-a610-6532f0d51ef7",
  "connections": {
    "08c6a217-5773-4ebc-ba6e-326de99e90e5": {
      "main": [
        [
          {
            "node": "74a02ac0-859d-4611-aeb0-021a654c92b8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3ea0d19-703b-4f99-955c-122162065363": {
      "main": [
        [
          {
            "node": "0057d772-732e-4e47-8ab8-eebe140df692",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538": {
      "main": [
        [],
        [
          {
            "node": "08c6a217-5773-4ebc-ba6e-326de99e90e5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a3fe5ce7-3a91-459d-8ef8-17a06fbef12a": {
      "ai_outputParser": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "8f1934bf-ccec-4b25-b6cc-7607dcbdf798": {
      "main": [
        [
          {
            "node": "048c1093-ea88-441c-98fa-a2d003ab6b8d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "07b78de1-fdc8-4233-a231-37258fa5d1f0": {
      "main": [
        []
      ]
    },
    "048c1093-ea88-441c-98fa-a2d003ab6b8d": {
      "main": [
        [
          {
            "node": "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9e9a27ce-b95c-4ecd-b3c4-97aba420ce45": {
      "main": [
        [
          {
            "node": "8f1934bf-ccec-4b25-b6cc-7607dcbdf798",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0057d772-732e-4e47-8ab8-eebe140df692": {
      "main": [
        [
          {
            "node": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "beb67c30-dd39-4c7d-94f8-853410dec09b": {
      "main": [
        [
          {
            "node": "f8c4804a-85ad-462c-913d-e0bc5242bc74",
            "type": "main",
            "index": 0
          },
          {
            "node": "b7fc74e5-4165-4b1a-9c0a-27565302c0e1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9": {
      "main": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ff687082-9e3d-4043-9aa6-29e3029499d4": {
      "ai_languageModel": [
        [
          {
            "node": "f3ea0d19-703b-4f99-955c-122162065363",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f8c4804a-85ad-462c-913d-e0bc5242bc74": {
      "main": [
        [
          {
            "node": "07b78de1-fdc8-4233-a231-37258fa5d1f0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "74a02ac0-859d-4611-aeb0-021a654c92b8": {
      "main": [
        [
          {
            "node": "beb67c30-dd39-4c7d-94f8-853410dec09b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b7fc74e5-4165-4b1a-9c0a-27565302c0e1": {
      "main": [
        [
          {
            "node": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c843170b-e360-4eea-853c-ef38c9f3affe": {
      "ai_languageModel": [
        [
          {
            "node": "beb67c30-dd39-4c7d-94f8-853410dec09b",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Intelligence Artificielle, Opérations IT

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Scraping d'entreprises Google Maps et enrichissement de prospects avec Bright Data et Google Gemini
Outil de capture d'entreprises Google Maps et d'enrichissement de leads avec Bright Data et Gemini
Set
Code
Wait
+
Set
Code
Wait
29 NœudsRanjan Dailata
Génération de leads
Extraction de pages LinkedIn à l'aide du serveur MCP Bright Data et de Google Gemini
utilisationBright Data MCP服务器etGoogle GeminiextractionetconversionLinkedIndonnées
Set
Code
Merge
+
Set
Code
Merge
20 NœudsRanjan Dailata
Intelligence Artificielle
Moteur de correspondance automatique CV-emploi avec Bright Data et OpenAI 4o mini
Bright Data MCP与OpenAI 4o minideautomatisation简历职位匹配引擎
Set
Function
Split Out
+
Set
Function
Split Out
22 NœudsRanjan Dailata
Ressources Humaines
Extraction et recherche de données ProductHunt pilotées par un agent IA (en utilisant Bright Data et Google Gemini)
Extraire et rechercher des données ProductHunt avec Bright Data MCP et Google Gemini AI
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 NœudsRanjan Dailata
Intelligence Artificielle
Extraction structurée de données de recherche Brave (Bright Data MCP + Google Gemini)
Extraire des données structurées à partir de recherches Brave avec Bright Data MCP et Google Gemini
Set
Switch
Function
+
Set
Switch
Function
24 NœudsRanjan Dailata
Intelligence Artificielle
Extraction, résumé et analyse des baisses de prix des produits Amazon avec Bright Data
utilisationBright DataetGoogle Geminiextraction、总结etanalyse亚马逊降价信息
Set
Wait
Merge
+
Set
Wait
Merge
26 NœudsRanjan Dailata
Intelligence Artificielle
Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds22
Catégorie2
Types de nœuds13
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Ranjan Dailata

Ranjan Dailata

@ranjancse

A Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34