Moteur de correspondance automatique CV-emploi avec Bright Data et OpenAI 4o mini
Ceci est unHR, AIworkflow d'automatisation du domainecontenant 22 nœuds.Utilise principalement des nœuds comme Set, Function, SplitOut, McpClient, HttpRequest, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Bright Data MCP与OpenAI 4o minideautomatisation简历职位匹配引擎
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API OpenAI
Nœuds utilisés (22)
{
"id": "gIdIv8qN7zruqLbG",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Automated Resume Job Matching Engine with Bright Data & OpenAI 4o mini",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ZOwtAMLepQaGW76t",
"name": "Building Blocks",
"createdAt": "2025-04-13T15:23:40.462Z",
"updatedAt": "2025-04-13T15:23:40.462Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
},
{
"id": "rKOa98eAi3IETrLu",
"name": "HR",
"createdAt": "2025-04-13T04:59:30.580Z",
"updatedAt": "2025-04-13T04:59:30.580Z"
}
],
"nodes": [
{
"id": "a75e1f8d-9dd4-4c87-b1ab-05c502b8cae7",
"name": "Boucler sur les éléments",
"type": "n8n-nodes-base.splitInBatches",
"position": [
736,
115
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "92f0272d-dc5d-4424-9d96-cc2521e8a4ae",
"name": "Lors du clic sur 'Tester le workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-740,
115
],
"parameters": {},
"typeVersion": 1
},
{
"id": "3820c9d3-be68-4a60-a810-943a9795bdbd",
"name": "Lister tous les outils pour Bright Data",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-520,
115
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "83219c20-7341-4e42-8cae-cc2e1e8e9b8e",
"name": "Définir les champs de saisie",
"type": "n8n-nodes-base.set",
"position": [
-300,
115
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "214e61a0-3587-453f-baf5-eac013990857",
"name": "resume",
"type": "string",
"value": "I am Pechi, Senior Python Developer with 9+ years of experience."
},
{
"id": "98c64f52-1564-4889-811d-39cac3951cc3",
"name": "keywords",
"type": "string",
"value": "Python"
},
{
"id": "34202143-4b07-4301-b5e9-767430952214",
"name": "location",
"type": "string",
"value": "India"
},
{
"id": "47d01515-302b-4a91-b9db-3af0033a56e1",
"name": "job_search_base_url",
"type": "string",
"value": "https://www.linkedin.com/jobs/search/"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "40a70c2b-5dcc-44f7-8fde-9c28748181cd",
"name": "Client MCP Bright Data pour l'extraction d'emplois",
"type": "n8n-nodes-mcp.mcpClient",
"notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
"position": [
-80,
115
],
"parameters": {
"toolName": "scrape_as_html",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.job_search_base_url }}?keywords={{ $json.keywords }}&location={{ $json.location }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "ff3193e5-cd22-40f4-8180-b76ad32055b3",
"name": "Diviser",
"type": "n8n-nodes-base.splitOut",
"position": [
516,
115
],
"parameters": {
"options": {},
"fieldToSplitOut": "output"
},
"typeVersion": 1
},
{
"id": "cd1fcbd8-acf3-4a91-8158-f664aaa839e7",
"name": "Client MCP Bright Data pour l'extraction d'emplois dans une boucle",
"type": "n8n-nodes-mcp.mcpClient",
"notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
"position": [
956,
-10
],
"parameters": {
"toolName": "scrape_as_html",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.output }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "d9f78a12-9eaa-4d9b-9e5c-5150d6e40e95",
"name": "Extracteur d'informations de description de poste",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1176,
-10
],
"parameters": {
"text": "=Extract the job description in a textual format\n\nHere's the content: {{ $json.result.content[0].text }}",
"options": {},
"attributes": {
"attributes": [
{
"name": "job_description",
"description": "Job Description"
}
]
}
},
"retryOnFail": true,
"typeVersion": 1
},
{
"id": "4636d7e9-8d13-4f57-95f9-936f6d8bbf1d",
"name": "Appariement d'emploi par IA",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1552,
-10
],
"parameters": {
"text": "=Hi, you are a helpful job matcher, you analyze the given resume and job description and providing a job matching skills and score in a JSON format.\n\nHere's the Resume:\n{{ $('Set the Input fields').item.json.resume }}\n\nHere's the Job Desc:\n\n{{ $json.output.job_description }}",
"promptType": "define",
"hasOutputParser": true
},
"retryOnFail": true,
"typeVersion": 1.6
},
{
"id": "51b5d9dd-b0c8-4aaf-b789-f96e94519b94",
"name": "Analyseur de sortie structurée",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1720,
200
],
"parameters": {
"jsonSchemaExample": "{\n \"job_match_analysis\": {\n \"resume_summary\": \"Senior Python Developer with 9+ years of experience.\",\n \"job_description_summary\": \"Seeking a developer with expertise in Sagemaker, Python, and LLM. The role involves client interaction, requirements understanding, design review, architecture validation, and team leadership.\",\n \"skill_match\": [\n {\n \"skill\": \"python\",\n \"resume\": \"Strong match - explicitly mentioned as core skill.\",\n \"job_description\": \"Strong match - listed as a primary skill.\",\n \"score\": 100\n },\n {\n \"skill\": \"sagemaker\",\n \"resume\": \"No match - not mentioned in the resume.\",\n \"job_description\": \"Strong match - listed as a primary skill.\",\n \"score\": 0\n },\n {\n \"skill\": \"llm\",\n \"resume\": \"No match - not mentioned in the resume.\",\n \"job_description\": \"Strong match - listed as a primary skill.\",\n \"score\": 0\n },\n {\n \"skill\": \"leadership\",\n \"resume\": \"Implicit match - Senior role implies leadership experience.\",\n \"job_description\": \"Explicit match - requires leading and guiding teams.\",\n \"score\": 75\n },\n {\n \"skill\": \"client_interaction\",\n \"resume\": \"No explicit mention, inferred from senior role.\",\n \"job_description\": \"Explicit match - requires interfacing with clients.\",\n \"score\": 50\n }\n ],\n \"overall_match_score\": 45,\n \"rationale\": \"The candidate's core skill (Python) is a strong match. The resume implies leadership skills, aligning with the job's team leadership requirements. However, the absence of Sagemaker and LLM experience significantly lowers the overall score. The candidate needs to demonstrate experience in these areas for a higher match.\",\n \"recommendations\": [\n \"Highlight any experience (even if limited) with Sagemaker or LLMs in the resume.\",\n \"Quantify Python experience with specific projects and technologies used.\",\n \"Emphasize any client-facing experience or responsibilities in previous roles.\",\n \"Showcase leadership experience with specific examples (e.g., mentoring junior developers, leading project teams).\"\n ]\n }\n}\n"
},
"typeVersion": 1.2
},
{
"id": "1dcb1ca7-e4e9-4775-9eb8-94c9e1f89e64",
"name": "Créer des données binaires pour l'appariement d'emploi par IA",
"type": "n8n-nodes-base.function",
"position": [
1928,
-60
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
},
{
"id": "da19ddc2-5e0f-4a4a-b524-1086b59c511f",
"name": "Webhook Notification pour l'appariement d'emploi par IA",
"type": "n8n-nodes-base.httpRequest",
"position": [
1928,
215
],
"parameters": {
"url": "https://webhook.site/7b5380a0-0544-48dc-be43-0116cb2d52c2",
"options": {},
"sendBody": true,
"contentType": "multipart-form-data",
"bodyParameters": {
"parameters": [
{
"name": "job_match_response",
"value": "={{ $json.output.job_match_analysis.toJsonString() }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "0561839e-9ca9-4c18-9a9e-98b9a1f796fc",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
-320
],
"parameters": {
"width": 440,
"height": 120,
"content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
},
"typeVersion": 1
},
{
"id": "d68fd51a-d74f-4236-89e1-6144f9e80943",
"name": "Note adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-300,
-140
],
"parameters": {
"color": 5,
"width": 440,
"height": 220,
"content": "## LLM Usages\n\nOpenAI 4o mini LLM is being utilized for the structured data extraction handling."
},
"typeVersion": 1
},
{
"id": "29342cc1-10dd-490c-b274-fd5a82dbae1e",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
-160
],
"parameters": {
"color": 3,
"width": 1660,
"height": 620,
"content": "## Bright Data MCP Job Extract via Job Listings\nExtract job information via BrightData MCP and then perform the AI Job matching by utilizing the OpenAI GPT 4o mini LLM"
},
"typeVersion": 1
},
{
"id": "25d7b451-0f5e-4694-a821-ea7fe93b7d6f",
"name": "Note adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-740,
-700
],
"parameters": {
"color": 7,
"width": 400,
"height": 400,
"content": "## Logo\n\n\n\n"
},
"typeVersion": 1
},
{
"id": "02e69f64-f7b4-4a0d-828c-3fcea324268e",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-740,
-240
],
"parameters": {
"width": 400,
"height": 320,
"content": "## Note\n\nDeals with the LinkedIn profile data extraction by utilizing the Bright Data MCP and OpenAI GPT 4o LLM.\n\n**Please make sure to set the input fields node with the LinkedIn profile URL with the resume, location, keywords etc.\n\nPlease make sure to update the Webhook Notification URL of your interest**"
},
"typeVersion": 1
},
{
"id": "cb84eebb-4215-4bb3-91f6-bf7897a8ddf6",
"name": "OpenAI Modèle de chat pour l'extraction de description de poste",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1264,
210
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "vPKynKbDzJ5ZU4cU",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "4d14c3a1-5402-4f27-beda-dba41c1aa912",
"name": "OpenAI Modèle de chat pour l'appariement d'emploi par IA",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1560,
200
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "vPKynKbDzJ5ZU4cU",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "2aec37e7-a67b-47b1-b3b2-7ea7e114bfff",
"name": "Écrire la réponse d'appariement d'emploi par IA sur le disque",
"type": "n8n-nodes-base.readWriteFile",
"position": [
2148,
-60
],
"parameters": {
"options": {},
"fileName": "=d:\\Job-Match-{{$now.toSeconds()}}.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "af980102-85d0-4f90-842f-196605f6bcd6",
"name": "Extracteur de données d'emploi paginées",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
140,
115
],
"parameters": {
"text": "=Extract all the job links from the provided content. \n\nHere's the content: {{ $json.result.content[0].text }}",
"options": {},
"schemaType": "manual",
"inputSchema": "{\n\t\"type\": \"array\",\n\t\"properties\": {\n\t\t\"link\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
},
"retryOnFail": true,
"typeVersion": 1
},
{
"id": "cb8e32c9-c1ac-4441-a42a-42e6b0d78970",
"name": "OpenAI Modèle de chat pour l'extraction d'emplois paginés",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
228,
335
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "vPKynKbDzJ5ZU4cU",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "b366450e-b10e-412e-b442-a0827ca430bb",
"connections": {
"ff3193e5-cd22-40f4-8180-b76ad32055b3": {
"main": [
[
{
"node": "a75e1f8d-9dd4-4c87-b1ab-05c502b8cae7",
"type": "main",
"index": 0
}
]
]
},
"4636d7e9-8d13-4f57-95f9-936f6d8bbf1d": {
"main": [
[
{
"node": "1dcb1ca7-e4e9-4775-9eb8-94c9e1f89e64",
"type": "main",
"index": 0
},
{
"node": "da19ddc2-5e0f-4a4a-b524-1086b59c511f",
"type": "main",
"index": 0
}
]
]
},
"a75e1f8d-9dd4-4c87-b1ab-05c502b8cae7": {
"main": [
[],
[
{
"node": "cd1fcbd8-acf3-4a91-8158-f664aaa839e7",
"type": "main",
"index": 0
}
]
]
},
"83219c20-7341-4e42-8cae-cc2e1e8e9b8e": {
"main": [
[
{
"node": "40a70c2b-5dcc-44f7-8fde-9c28748181cd",
"type": "main",
"index": 0
}
]
]
},
"51b5d9dd-b0c8-4aaf-b789-f96e94519b94": {
"ai_outputParser": [
[
{
"node": "4636d7e9-8d13-4f57-95f9-936f6d8bbf1d",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"af980102-85d0-4f90-842f-196605f6bcd6": {
"main": [
[
{
"node": "ff3193e5-cd22-40f4-8180-b76ad32055b3",
"type": "main",
"index": 0
}
]
]
},
"d9f78a12-9eaa-4d9b-9e5c-5150d6e40e95": {
"main": [
[
{
"node": "4636d7e9-8d13-4f57-95f9-936f6d8bbf1d",
"type": "main",
"index": 0
}
]
]
},
"3820c9d3-be68-4a60-a810-943a9795bdbd": {
"main": [
[
{
"node": "83219c20-7341-4e42-8cae-cc2e1e8e9b8e",
"type": "main",
"index": 0
}
]
]
},
"92f0272d-dc5d-4424-9d96-cc2521e8a4ae": {
"main": [
[
{
"node": "3820c9d3-be68-4a60-a810-943a9795bdbd",
"type": "main",
"index": 0
}
]
]
},
"4d14c3a1-5402-4f27-beda-dba41c1aa912": {
"ai_languageModel": [
[
{
"node": "4636d7e9-8d13-4f57-95f9-936f6d8bbf1d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"1dcb1ca7-e4e9-4775-9eb8-94c9e1f89e64": {
"main": [
[
{
"node": "2aec37e7-a67b-47b1-b3b2-7ea7e114bfff",
"type": "main",
"index": 0
}
]
]
},
"da19ddc2-5e0f-4a4a-b524-1086b59c511f": {
"main": [
[
{
"node": "a75e1f8d-9dd4-4c87-b1ab-05c502b8cae7",
"type": "main",
"index": 0
}
]
]
},
"cb84eebb-4215-4bb3-91f6-bf7897a8ddf6": {
"ai_languageModel": [
[
{
"node": "d9f78a12-9eaa-4d9b-9e5c-5150d6e40e95",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"2aec37e7-a67b-47b1-b3b2-7ea7e114bfff": {
"main": [
[]
]
},
"40a70c2b-5dcc-44f7-8fde-9c28748181cd": {
"main": [
[
{
"node": "af980102-85d0-4f90-842f-196605f6bcd6",
"type": "main",
"index": 0
}
]
]
},
"cb8e32c9-c1ac-4441-a42a-42e6b0d78970": {
"ai_languageModel": [
[
{
"node": "af980102-85d0-4f90-842f-196605f6bcd6",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"cd1fcbd8-acf3-4a91-8158-f664aaa839e7": {
"main": [
[
{
"node": "d9f78a12-9eaa-4d9b-9e5c-5150d6e40e95",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Ressources Humaines, Intelligence Artificielle
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Ranjan Dailata
@ranjancseA Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com
Partager ce workflow