Créer un système de questions-réponses pour les articles de Paul Graham avec OpenAI et la base de données vectorielle Milvus

Avancé

Ceci est unAIworkflow d'automatisation du domainecontenant 22 nœuds.Utilise principalement des nœuds comme Html, Limit, SplitOut, HttpRequest, ManualTrigger, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Utiliser OpenAI et la base de données vectorielle Milvus pour créer un système de question-réponse sur les articles de Paul Graham

Prérequis
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "89c9c2dbc29ad74e9e02caaf3e27ce718c567278274962e355a9a9679d5f3af7"
  },
  "nodes": [
    {
      "id": "33e94ee1-4244-4075-bb4b-93a99a2cacd9",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        20,
        560
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "dd97266d-a039-4d8f-bc7d-fb439ad5a6d7",
      "name": "Lors du clic sur \"Exécuter le workflow\"",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -180,
        0
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
      "name": "Récupérer la liste des essais",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        80,
        0
      ],
      "parameters": {
        "url": "http://www.paulgraham.com/articles.html",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
      "name": "Extraire les noms des essais",
      "type": "n8n-nodes-base.html",
      "position": [
        280,
        0
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "essay",
              "attribute": "href",
              "cssSelector": "table table a",
              "returnArray": true,
              "returnValue": "attribute"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "c121dc65-37e3-49d4-b449-f28491e19a6f",
      "name": "Séparer en éléments individuels",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        480,
        0
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "essay"
      },
      "typeVersion": 1
    },
    {
      "id": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
      "name": "Récupérer les textes des essais",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        880,
        0
      ],
      "parameters": {
        "url": "=http://www.paulgraham.com/{{ $json.essay }}",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
      "name": "Limiter aux 3 premiers",
      "type": "n8n-nodes-base.limit",
      "position": [
        680,
        0
      ],
      "parameters": {
        "maxItems": 3
      },
      "typeVersion": 1
    },
    {
      "id": "318aeeed-fcce-4de2-aa04-92033ef01f28",
      "name": "Extraire le texte uniquement",
      "type": "n8n-nodes-base.html",
      "position": [
        1200,
        0
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "data",
              "cssSelector": "body",
              "skipSelectors": "img,nav"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "0668851e-a31f-4e6e-8966-4544092e318e",
      "name": "Note adhésive3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        -120
      ],
      "parameters": {
        "width": 1071.752021563343,
        "height": 285.66037735849045,
        "content": "## Scrape latest Paul Graham essays"
      },
      "typeVersion": 1
    },
    {
      "id": "cf9af24c-9e08-4f27-ad4e-509f72e54a9b",
      "name": "Note adhésive5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1120,
        -120
      ],
      "parameters": {
        "width": 625,
        "height": 607,
        "content": "## Load into Milvus vector store"
      },
      "typeVersion": 1
    },
    {
      "id": "95e9a59d-1832-4eb7-b58d-ba391c1acb1c",
      "name": "À la réception d'un message chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -200,
        380
      ],
      "webhookId": "cd2703a7-f912-46fe-8787-3fb83ea116ab",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "0076ea3d-e667-4df2-83c3-9de0d3de0498",
      "name": "Note adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -380,
        -160
      ],
      "parameters": {
        "width": 280,
        "height": 180,
        "content": "## Step 1\n1. Set up a Milvus server based on [this guide](https://milvus.io/docs/install_standalone-docker-compose.md). And then create a collection named `my_collection`.\n2. Click this workflow to load scrape and load Paul Graham essays to Milvus collection.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
      "name": "Milvus Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
      "position": [
        1420,
        0
      ],
      "parameters": {
        "mode": "insert",
        "options": {
          "clearCollection": true
        },
        "milvusCollection": {
          "__rl": true,
          "mode": "list",
          "value": "my_collection",
          "cachedResultName": "my_collection"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "d786c471-d564-4f25-beab-f1c7f4559f7a",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        1460,
        220
      ],
      "parameters": {
        "options": {},
        "jsonData": "={{ $('Extract Text Only').item.json.data }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "26730b7b-2bb9-46f8-83c3-3d4ffdfdef57",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1320,
        240
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "de836110-4073-44d5-bbf3-d57f57525f69",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1540,
        340
      ],
      "parameters": {
        "options": {},
        "chunkSize": 6000
      },
      "typeVersion": 1
    },
    {
      "id": "ddaa936e-416a-40e4-adf6-cf7ebfb8b094",
      "name": "Note adhésive1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -380,
        280
      ],
      "parameters": {
        "width": 280,
        "height": 120,
        "content": "## Step 2\nChat with this QA Chain with Milvus retriever\n"
      },
      "typeVersion": 1
    },
    {
      "id": "f5b7410f-37c7-40ff-b841-12ed04252317",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        80,
        860
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
      "name": "Milvus Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
      "position": [
        120,
        720
      ],
      "parameters": {
        "milvusCollection": {
          "__rl": true,
          "mode": "list",
          "value": "my_collection",
          "cachedResultName": "my_collection"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "2402387f-e147-4239-9128-34af296e0012",
      "name": "Note adhésive2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -20,
        360
      ],
      "parameters": {
        "color": 7,
        "width": 574,
        "height": 629,
        "content": ""
      },
      "typeVersion": 1
    },
    {
      "id": "3665ef25-e464-496a-84d6-980b96e78e9a",
      "name": "Chaîne Q&R pour récupérer depuis Milvus et répondre aux questions",
      "type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
      "position": [
        120,
        380
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.5
    },
    {
      "id": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
      "name": "Milvus Vector Store Retriever",
      "type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
      "position": [
        260,
        580
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "c4d4a979-3182-46c9-b145-fa4e6ba57011": {
      "main": [
        [
          {
            "node": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cd84596e-4046-4d33-9f43-cf464e5c5c01": {
      "main": [
        [
          {
            "node": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26730b7b-2bb9-46f8-83c3-3d4ffdfdef57": {
      "ai_embedding": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "318aeeed-fcce-4de2-aa04-92033ef01f28": {
      "main": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5644c48d-62b6-4e2d-ad25-013b55f5ec71": {
      "main": [
        [
          {
            "node": "318aeeed-fcce-4de2-aa04-92033ef01f28",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "33e94ee1-4244-4075-bb4b-93a99a2cacd9": {
      "ai_languageModel": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f5b7410f-37c7-40ff-b841-12ed04252317": {
      "ai_embedding": [
        [
          {
            "node": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "d786c471-d564-4f25-beab-f1c7f4559f7a": {
      "ai_document": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "2e2913f9-d01a-41e8-b1b8-9a981910db7b": {
      "main": [
        [
          {
            "node": "c121dc65-37e3-49d4-b449-f28491e19a6f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7a5d1b3f-9b2c-4943-9b40-2a213e30159c": {
      "ai_vectorStore": [
        [
          {
            "node": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "c121dc65-37e3-49d4-b449-f28491e19a6f": {
      "main": [
        [
          {
            "node": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "95e9a59d-1832-4eb7-b58d-ba391c1acb1c": {
      "main": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "10bf4a2c-ee2b-4185-b1e5-29b8664078fb": {
      "ai_retriever": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "ai_retriever",
            "index": 0
          }
        ]
      ]
    },
    "dd97266d-a039-4d8f-bc7d-fb439ad5a6d7": {
      "main": [
        [
          {
            "node": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "de836110-4073-44d5-bbf3-d57f57525f69": {
      "ai_textSplitter": [
        [
          {
            "node": "d786c471-d564-4f25-beab-f1c7f4559f7a",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Intelligence Artificielle

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds22
Catégorie1
Types de nœuds14
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Cheney Zhang

Cheney Zhang

@zc277584121

Algorithm engineer at Zilliz, dedicating to the application of vector databases in the AI ecosystem.

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34