Insérer et récupérer des documents
Ceci est unAIworkflow d'automatisation du domainecontenant 25 nœuds.Utilise principalement des nœuds comme Set, Code, Html, Limit, SplitOut, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Construire un système de questions-réponses RAG avec citations en utilisant Paul Essays, Milvus et OpenAI
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API OpenAI
Nœuds utilisés (25)
Catégorie
{
"id": "Hjyv9FkH5Oh6Yxw4",
"meta": {
"instanceId": "2c4c1e23e7b067270c08aab616bada21d0c384d16f212b23cf1143c6baa09219"
},
"name": "Insert and retrieve documents",
"tags": [
{
"id": "msnDWKHQmwMDxWQH",
"name": "Milvus",
"createdAt": "2025-04-16T12:48:14.539Z",
"updatedAt": "2025-04-16T12:48:14.539Z"
},
{
"id": "tnCpo8hq8uKrdASK",
"name": "AI",
"createdAt": "2025-04-16T12:47:57.976Z",
"updatedAt": "2025-04-16T12:47:57.976Z"
}
],
"nodes": [
{
"id": "52044ccd-4e0d-4353-b612-cf8db1b55331",
"name": "Lors du clic sur 'Exécuter le workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-500,
-100
],
"parameters": {},
"typeVersion": 1
},
{
"id": "b6993775-d21b-4ae8-a59c-43aef2b7002b",
"name": "Récupérer la liste des essais",
"type": "n8n-nodes-base.httpRequest",
"position": [
-220,
-100
],
"parameters": {
"url": "http://www.paulgraham.com/articles.html",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "cbaeb236-5c93-4b34-a06b-ff0e5de8525f",
"name": "Extraire les noms des essais",
"type": "n8n-nodes-base.html",
"position": [
-20,
-100
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "essay",
"attribute": "href",
"cssSelector": "table table a",
"returnArray": true,
"returnValue": "attribute"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "d92b6692-4a02-4519-b113-8a9172c71de9",
"name": "Diviser en éléments",
"type": "n8n-nodes-base.splitOut",
"position": [
180,
-100
],
"parameters": {
"options": {},
"fieldToSplitOut": "essay"
},
"typeVersion": 1
},
{
"id": "d16ba71b-10fc-454f-8bfc-a6826280a4e7",
"name": "Récupérer les textes des essais",
"type": "n8n-nodes-base.httpRequest",
"position": [
580,
-100
],
"parameters": {
"url": "=http://www.paulgraham.com/{{ $json.essay }}",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "c4fa74ea-6af5-410c-bf5c-9d8d3decf31b",
"name": "Limiter aux 3 premiers",
"type": "n8n-nodes-base.limit",
"position": [
380,
-100
],
"parameters": {
"maxItems": 3
},
"typeVersion": 1
},
{
"id": "3da8495b-62df-475d-b99d-e0f3c64266e3",
"name": "Extraire uniquement le texte",
"type": "n8n-nodes-base.html",
"position": [
900,
-100
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "data",
"cssSelector": "body",
"skipSelectors": "img,nav"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "4a9b5d5d-fc94-40b7-af0c-13d992bc1eb9",
"name": "Note adhésive 3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-300,
-220
],
"parameters": {
"width": 1071.752021563343,
"height": 285.66037735849045,
"content": "## Scrape latest Paul Graham essays"
},
"typeVersion": 1
},
{
"id": "b8a7a288-186f-4444-b0de-33ed90009c0a",
"name": "Note adhésive 5",
"type": "n8n-nodes-base.stickyNote",
"position": [
820,
-220
],
"parameters": {
"width": 625,
"height": 607,
"content": "## Load into Milvus vector store"
},
"typeVersion": 1
},
{
"id": "c9e7b166-cc65-47e2-a437-9c00017b492a",
"name": "Séparateur de texte récursif par caractères 1",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1240,
240
],
"parameters": {
"options": {},
"chunkSize": 6000
},
"typeVersion": 1
},
{
"id": "e1a75f27-7c8c-4d0d-9b0f-33fe9ec96fc6",
"name": "Générer une réponse",
"type": "n8n-nodes-base.set",
"position": [
1240,
560
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "11396286-0378-4c3a-86e1-c9ef51afbfc7",
"name": "text",
"type": "string",
"value": "={{ $json.answer }} {{ $if(!$json.citations.isEmpty(), \"\\n\" + $json.citations.join(\"\"), '') }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "8b3497ad-5bc8-44b3-bdf4-3a028fe265ce",
"name": "Composer les citations",
"type": "n8n-nodes-base.set",
"position": [
1040,
560
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "ace6185e-8b3d-4f89-ae36-dfe0c391a0a9",
"name": "citations",
"type": "array",
"value": "={{ $json.citations.map(i => '[' + $('Get top chunks matching query').all()[$json.citations].json.document.metadata.file_name + ', lines ' + $('Get top chunks matching query').all()[$json.citations].json.document.metadata['loc.lines.from'] + '-' + $('Get top chunks matching query').all()[$json.citations].json.document.metadata['loc.lines.to'] + ']') }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "0452cf15-145c-49dd-8803-4c8b8a7adbea",
"name": "Répondre à la requête basée sur les segments",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
680,
560
],
"parameters": {
"text": "={{ $json.context }}\n\nQuestion: {{ $('When chat message received').first().json.chatInput }}\nHelpful Answer:",
"options": {
"systemPromptTemplate": "=Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Important: In your response, also include the the indexes of the chunks you used to generate the answer."
},
"schemaType": "manual",
"inputSchema": "{\n \"type\": \"object\",\n \"required\": [\"answer\", \"citations\"],\n \"properties\": {\n \"answer\": {\n \"type\": \"string\"\n },\n \"citations\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"number\"\n }\n }\n }\n}"
},
"typeVersion": 1
},
{
"id": "d385ac35-6f94-4101-99de-5ce1991f40c4",
"name": "Préparer les segments",
"type": "n8n-nodes-base.code",
"position": [
480,
560
],
"parameters": {
"jsCode": "let out = \"\"\nfor (const i in $input.all()) {\n let itemText = \"--- CHUNK \" + i + \" ---\\n\"\n itemText += $input.all()[i].json.document.pageContent + \"\\n\"\n itemText += \"\\n\"\n out += itemText\n}\n\nreturn {\n 'context': out\n};"
},
"typeVersion": 2
},
{
"id": "379837f2-4f96-43ff-8e87-722cbe6d652f",
"name": "Définir le nombre maximal de segments à envoyer au modèle",
"type": "n8n-nodes-base.set",
"position": [
-300,
560
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "33f4addf-72f3-4618-a6ba-5b762257d723",
"name": "chunks",
"type": "number",
"value": 4
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "9bc391bb-df47-41df-b170-9df47a6b5e87",
"name": "Embeddings OpenAI 2",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-100,
780
],
"parameters": {
"model": "text-embedding-ada-002",
"options": {}
},
"credentials": {
"openAiApi": {
"id": "hH2PTDH4fbS7fdPv",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "efb030f4-445b-4ba0-b5c9-95e4e5893664",
"name": "Lors de la réception d'un message de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-540,
560
],
"webhookId": "cd2703a7-f912-46fe-8787-3fb83ea116ab",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "c74943be-0008-4d4c-9dea-598a648a97a2",
"name": "Note adhésive 1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
440
],
"parameters": {
"color": 7,
"width": 1594,
"height": 529,
"content": ""
},
"typeVersion": 1
},
{
"id": "2e27f3d8-e8a2-4647-80dd-f2643b224cb5",
"name": "Magasin de vecteurs Milvus en récupération",
"type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
"position": [
0,
560
],
"parameters": {
"mode": "load",
"topK": 2,
"prompt": "answer the question",
"milvusCollection": {
"__rl": true,
"mode": "list",
"value": "my_collection",
"cachedResultName": "my_collection"
}
},
"credentials": {
"milvusApi": {
"id": "8tMHHoLiWXIAXa7S",
"name": "Milvus account"
}
},
"typeVersion": 1.1
},
{
"id": "a3cf7e0e-f681-4880-9ccf-5c42d5457c0f",
"name": "Magasin de vecteurs Milvus",
"type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
"position": [
1120,
-100
],
"parameters": {
"mode": "insert",
"options": {
"clearCollection": true
},
"milvusCollection": {
"__rl": true,
"mode": "list",
"value": "my_collection",
"cachedResultName": "my_collection"
}
},
"credentials": {
"milvusApi": {
"id": "8tMHHoLiWXIAXa7S",
"name": "Milvus account"
}
},
"typeVersion": 1.1
},
{
"id": "4c4cc5a5-e880-466f-a298-4af53a2acbec",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-700,
-260
],
"parameters": {
"width": 280,
"height": 180,
"content": "## Step 1\n1. Set up a Milvus server based on [this guide](https://milvus.io/docs/install_standalone-docker-compose.md). And then create a collection named `my_collection`.\n2. Click this workflow to load scrape and load Paul Graham essays to Milvus collection.\n"
},
"typeVersion": 1
},
{
"id": "18f42da4-42ea-4eb0-9c43-ef8bd31ab7ff",
"name": "Note adhésive 2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-680,
460
],
"parameters": {
"height": 120,
"content": "## Step 2\nChat and get citations in response"
},
"typeVersion": 1
},
{
"id": "0af427ed-d901-4192-9fdc-986a63fd585b",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1020,
140
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "hH2PTDH4fbS7fdPv",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "3603852a-bf12-4289-9733-dcd29d12a4f6",
"name": "Chargeur de données par défaut",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1160,
120
],
"parameters": {
"options": {},
"jsonData": "={{ $('Extract Text Only').item.json.data }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "b49eb3ae-82cb-4d87-8f22-0789b3a14d83",
"name": "Modèle de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
680,
780
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "hH2PTDH4fbS7fdPv",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "5dc48a1d-aaf0-4052-9666-28f9e76d198c",
"connections": {
"d385ac35-6f94-4101-99de-5ce1991f40c4": {
"main": [
[
{
"node": "0452cf15-145c-49dd-8803-4c8b8a7adbea",
"type": "main",
"index": 0
}
]
]
},
"b6993775-d21b-4ae8-a59c-43aef2b7002b": {
"main": [
[
{
"node": "cbaeb236-5c93-4b34-a06b-ff0e5de8525f",
"type": "main",
"index": 0
}
]
]
},
"c4fa74ea-6af5-410c-bf5c-9d8d3decf31b": {
"main": [
[
{
"node": "d16ba71b-10fc-454f-8bfc-a6826280a4e7",
"type": "main",
"index": 0
}
]
]
},
"8b3497ad-5bc8-44b3-bdf4-3a028fe265ce": {
"main": [
[
{
"node": "e1a75f27-7c8c-4d0d-9b0f-33fe9ec96fc6",
"type": "main",
"index": 0
}
]
]
},
"0af427ed-d901-4192-9fdc-986a63fd585b": {
"ai_embedding": [
[
{
"node": "a3cf7e0e-f681-4880-9ccf-5c42d5457c0f",
"type": "ai_embedding",
"index": 0
}
]
]
},
"3da8495b-62df-475d-b99d-e0f3c64266e3": {
"main": [
[
{
"node": "a3cf7e0e-f681-4880-9ccf-5c42d5457c0f",
"type": "main",
"index": 0
}
]
]
},
"d16ba71b-10fc-454f-8bfc-a6826280a4e7": {
"main": [
[
{
"node": "3da8495b-62df-475d-b99d-e0f3c64266e3",
"type": "main",
"index": 0
}
]
]
},
"b49eb3ae-82cb-4d87-8f22-0789b3a14d83": {
"ai_languageModel": [
[
{
"node": "0452cf15-145c-49dd-8803-4c8b8a7adbea",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"9bc391bb-df47-41df-b170-9df47a6b5e87": {
"ai_embedding": [
[
{
"node": "2e27f3d8-e8a2-4647-80dd-f2643b224cb5",
"type": "ai_embedding",
"index": 0
}
]
]
},
"3603852a-bf12-4289-9733-dcd29d12a4f6": {
"ai_document": [
[
{
"node": "a3cf7e0e-f681-4880-9ccf-5c42d5457c0f",
"type": "ai_document",
"index": 0
}
]
]
},
"cbaeb236-5c93-4b34-a06b-ff0e5de8525f": {
"main": [
[
{
"node": "d92b6692-4a02-4519-b113-8a9172c71de9",
"type": "main",
"index": 0
}
]
]
},
"d92b6692-4a02-4519-b113-8a9172c71de9": {
"main": [
[
{
"node": "c4fa74ea-6af5-410c-bf5c-9d8d3decf31b",
"type": "main",
"index": 0
}
]
]
},
"379837f2-4f96-43ff-8e87-722cbe6d652f": {
"main": [
[
{
"node": "2e27f3d8-e8a2-4647-80dd-f2643b224cb5",
"type": "main",
"index": 0
}
]
]
},
"0452cf15-145c-49dd-8803-4c8b8a7adbea": {
"main": [
[
{
"node": "8b3497ad-5bc8-44b3-bdf4-3a028fe265ce",
"type": "main",
"index": 0
}
]
]
},
"2e27f3d8-e8a2-4647-80dd-f2643b224cb5": {
"main": [
[
{
"node": "d385ac35-6f94-4101-99de-5ce1991f40c4",
"type": "main",
"index": 0
}
]
]
},
"52044ccd-4e0d-4353-b612-cf8db1b55331": {
"main": [
[
{
"node": "b6993775-d21b-4ae8-a59c-43aef2b7002b",
"type": "main",
"index": 0
}
]
]
},
"c9e7b166-cc65-47e2-a437-9c00017b492a": {
"ai_textSplitter": [
[
{
"node": "3603852a-bf12-4289-9733-dcd29d12a4f6",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Intelligence Artificielle
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Cheney Zhang
@zc277584121Algorithm engineer at Zilliz, dedicating to the application of vector databases in the AI ecosystem.
Partager ce workflow