Surveillance automatisée des publications académiques, avec des vecteurs PDF, GPT-3.5 et des alertes Slack

Intermédiaire

Ceci est unPersonal Productivity, Multimodal AIworkflow d'automatisation du domainecontenant 10 nœuds.Utilise principalement des nœuds comme Set, Code, Slack, OpenAi, EmailSend. Automatisation de la surveillance d'articles académiques, avec des vecteurs PDF, GPT-3.5 et des notifications Slack

Prérequis
  • Token Bot Slack ou URL Webhook
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "placeholder"
  },
  "nodes": [
    {
      "id": "config-note",
      "name": "Configuration du Bot",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        250,
        150
      ],
      "parameters": {
        "content": "## Paper Monitoring Bot\n\nMonitors these topics:\n- Machine Learning\n- Neural Networks\n- Computer Vision\n\nRuns: Daily at 9 AM"
      },
      "typeVersion": 1
    },
    {
      "id": "schedule-trigger",
      "name": "Planification Quotidienne",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        450,
        300
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "hours",
              "hoursInterval": 24,
              "triggerAtHour": 9
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "set-params",
      "name": "Définir les Paramètres de Recherche",
      "type": "n8n-nodes-base.set",
      "position": [
        650,
        300
      ],
      "parameters": {
        "values": {
          "number": [
            {
              "name": "daysBack",
              "value": 1
            }
          ],
          "string": [
            {
              "name": "searchQueries",
              "value": "machine learning,neural networks,computer vision,deep learning"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "split-queries",
      "name": "Diviser les Requêtes",
      "type": "n8n-nodes-base.code",
      "position": [
        850,
        300
      ],
      "parameters": {
        "functionCode": "const queries = $json.searchQueries.split(',').map(q => q.trim());\nreturn queries.map(query => ({ query }));"
      },
      "typeVersion": 1
    },
    {
      "id": "pdfvector-search",
      "name": "PDF Vector - Rechercher de Nouveaux Articles",
      "type": "n8n-nodes-pdfvector.pdfVector",
      "position": [
        1050,
        300
      ],
      "parameters": {
        "limit": 10,
        "query": "={{ $json.query }}",
        "fields": [
          "title",
          "authors",
          "abstract",
          "date",
          "doi",
          "pdfUrl",
          "totalCitations"
        ],
        "resource": "academic",
        "yearFrom": "={{ new Date().getFullYear() }}",
        "operation": "search",
        "providers": [
          "arxiv",
          "pubmed",
          "semantic_scholar"
        ]
      },
      "typeVersion": 1
    },
    {
      "id": "filter-recent",
      "name": "Filtrer les Articles Récents",
      "type": "n8n-nodes-base.code",
      "position": [
        1250,
        300
      ],
      "parameters": {
        "functionCode": "// Filter papers from last N days\nconst daysBack = $node['Set Search Parameters'].json.daysBack;\nconst cutoffDate = new Date();\ncutoffDate.setDate(cutoffDate.getDate() - daysBack);\n\nconst recentPapers = $json.filter(paper => {\n  const paperDate = new Date(paper.date);\n  return paperDate >= cutoffDate;\n});\n\nreturn recentPapers.length > 0 ? recentPapers : [];"
      },
      "typeVersion": 1
    },
    {
      "id": "summarize-paper",
      "name": "Générer un Résumé",
      "type": "n8n-nodes-base.openAi",
      "position": [
        1450,
        300
      ],
      "parameters": {
        "model": "gpt-3.5-turbo",
        "messages": {
          "values": [
            {
              "content": "Summarize this research paper in 2-3 sentences:\n\nTitle: {{ $json.title }}\nAuthors: {{ $json.authors.join(', ') }}\nAbstract: {{ $json.abstract }}\n\nFocus on the main contribution and findings."
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "format-digest",
      "name": "Formater la Synthèse",
      "type": "n8n-nodes-base.code",
      "position": [
        1650,
        300
      ],
      "parameters": {
        "functionCode": "// Format papers for notification\nconst papers = $items().map(item => {\n  const paper = item.json;\n  return {\n    title: paper.title,\n    authors: paper.authors.slice(0, 3).join(', ') + (paper.authors.length > 3 ? ' et al.' : ''),\n    summary: paper.summary,\n    link: paper.doi ? `https://doi.org/${paper.doi}` : paper.url,\n    citations: paper.totalCitations || 0,\n    query: paper.originalQuery\n  };\n});\n\n// Group by query\nconst grouped = papers.reduce((acc, paper) => {\n  if (!acc[paper.query]) acc[paper.query] = [];\n  acc[paper.query].push(paper);\n  return acc;\n}, {});\n\nreturn { papers: grouped, totalCount: papers.length, date: new Date().toISOString() };"
      },
      "typeVersion": 1
    },
    {
      "id": "slack-notify",
      "name": "Envoyer une Alerte Slack",
      "type": "n8n-nodes-base.slack",
      "position": [
        1850,
        300
      ],
      "parameters": {
        "channel": "#research-alerts",
        "message": "=📚 *Daily Research Digest* - {{ $now.format('MMM DD, YYYY') }}\n\nFound {{ $json.totalCount }} new papers:\n\n{{ Object.entries($json.papers).map(([query, papers]) => `*${query}:*\\n${papers.map(p => `• ${p.title}\\n  _${p.authors}_\\n  ${p.summary}\\n  🔗 ${p.link}`).join('\\n\\n')}`).join('\\n\\n---\\n\\n') }}",
        "attachments": []
      },
      "typeVersion": 1
    },
    {
      "id": "email-digest",
      "name": "Envoyer la Synthèse par Email",
      "type": "n8n-nodes-base.emailSend",
      "position": [
        1850,
        450
      ],
      "parameters": {
        "html": "=<h2>Daily Research Digest</h2>\n<p>Found {{ $json.totalCount }} new papers</p>\n\n{{ Object.entries($json.papers).map(([query, papers]) => \n  `<h3>${query}</h3>\n  ${papers.map(p => \n    `<div style=\"margin-bottom: 20px;\">\n      <h4>${p.title}</h4>\n      <p><em>${p.authors}</em></p>\n      <p>${p.summary}</p>\n      <p><a href=\"${p.link}\">Read Paper</a> | Citations: ${p.citations}</p>\n    </div>`\n  ).join('')}`\n).join('\\n') }}",
        "subject": "=Daily Research Digest - {{ $now.format('MMM DD, YYYY') }}",
        "toEmail": "research-team@company.com"
      },
      "typeVersion": 1
    }
  ],
  "connections": {
    "format-digest": {
      "main": [
        [
          {
            "node": "slack-notify",
            "type": "main",
            "index": 0
          },
          {
            "node": "email-digest",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "split-queries": {
      "main": [
        [
          {
            "node": "pdfvector-search",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "schedule-trigger": {
      "main": [
        [
          {
            "node": "set-params",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "summarize-paper": {
      "main": [
        [
          {
            "node": "format-digest",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "filter-recent": {
      "main": [
        [
          {
            "node": "summarize-paper",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "set-params": {
      "main": [
        [
          {
            "node": "split-queries",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "pdfvector-search": {
      "main": [
        [
          {
            "node": "filter-recent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Intermédiaire - Productivité personnelle, IA Multimodale

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Informations sur le workflow
Niveau de difficulté
Intermédiaire
Nombre de nœuds10
Catégorie2
Types de nœuds8
Description de la difficulté

Adapté aux utilisateurs expérimentés, avec des workflows de complexité moyenne contenant 6-15 nœuds

Auteur
PDF Vector

PDF Vector

@pdfvector

A fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34