Revue automatique de littérature académique avec GPT-4 et recherche multi-base de données
Ceci est unDocument Extraction, AI RAG, Multimodal AIworkflow d'automatisation du domainecontenant 13 nœuds.Utilise principalement des nœuds comme If, Set, Code, OpenAi, SplitInBatches. Utiliser GPT-4 et la recherche multi-base de données pour automatiser la synthèse de la littérature académique
- •Clé API OpenAI
Nœuds utilisés (13)
{
"meta": {
"instanceId": "placeholder"
},
"nodes": [
{
"id": "overview-note",
"name": "Aperçu de la Revue",
"type": "n8n-nodes-base.stickyNote",
"position": [
50,
50
],
"parameters": {
"color": 5,
"width": 350,
"height": 180,
"content": "## 📖 Literature Review Generator\n\nSystematic review automation:\n• **Searches** multiple databases\n• **Screens** with inclusion criteria\n• **Assesses** study quality\n• **Synthesizes** findings\n• **Generates** PRISMA-compliant review"
},
"typeVersion": 1
},
{
"id": "search-note",
"name": "Recherche en Base de Données",
"type": "n8n-nodes-base.stickyNote",
"position": [
450,
450
],
"parameters": {
"width": 260,
"height": 160,
"content": "## 🔍 Search Strategy\n\nDatabases searched:\n• PubMed/MEDLINE\n• Web of Science\n• Cochrane Library\n• Google Scholar\n\n💡 De-duplicates results"
},
"typeVersion": 1
},
{
"id": "quality-note",
"name": "Qualité de l'Étude",
"type": "n8n-nodes-base.stickyNote",
"position": [
850,
450
],
"parameters": {
"width": 260,
"height": 150,
"content": "## 📊 Quality Assessment\n\n**Evaluates:**\n• Study design\n• Sample size\n• Risk of bias\n• Evidence level\n\n✅ Cochrane standards"
},
"typeVersion": 1
},
{
"id": "output-note",
"name": "Revue Finale",
"type": "n8n-nodes-base.stickyNote",
"position": [
1150,
450
],
"parameters": {
"color": 6,
"width": 260,
"height": 180,
"content": "## 📝 Review Output\n\nGenerates:\n• Narrative synthesis\n• Evidence tables\n• PRISMA diagram\n• Forest plots\n• Bibliography\n\n🎯 Publication ready!"
},
"typeVersion": 1
},
{
"id": "set-parameters",
"name": "Définir les Paramètres de Recherche",
"type": "n8n-nodes-base.set",
"notes": "Configure literature review parameters",
"position": [
250,
300
],
"parameters": {
"values": {
"number": [
{
"name": "maxPapers",
"value": 20
}
],
"string": [
{
"name": "topic",
"value": "machine learning in healthcare"
},
{
"name": "yearFrom",
"value": "2020"
},
{
"name": "yearTo",
"value": "2024"
}
]
}
},
"typeVersion": 1
},
{
"id": "pdfvector-search",
"name": "PDF Vector - Rechercher des Articles",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Search academic databases",
"position": [
450,
300
],
"parameters": {
"limit": 50,
"query": "={{ $json.topic }}",
"yearTo": "={{ $json.yearTo }}",
"resource": "academic",
"yearFrom": "={{ $json.yearFrom }}",
"operation": "search",
"providers": [
"pubmed",
"semantic-scholar",
"arxiv"
],
"additionalFields": {
"fields": [
"title",
"abstract",
"authors",
"year",
"doi",
"pdfURL",
"totalCitations"
]
}
},
"typeVersion": 1
},
{
"id": "rank-papers",
"name": "Classer et Sélectionner les Articles",
"type": "n8n-nodes-base.code",
"notes": "Rank papers by relevance",
"position": [
650,
300
],
"parameters": {
"jsCode": "// Rank papers by relevance and citations\nconst papers = $input.all().map(item => item.json);\nconst searchTopic = $node['Set Search Parameters'].json.topic;\n\n// Calculate relevance scores\nconst scoredPapers = papers.map(paper => {\n let score = 0;\n \n // Citation score (normalized)\n const maxCitations = Math.max(...papers.map(p => p.totalCitations || 0));\n const citationScore = (paper.totalCitations || 0) / (maxCitations || 1) * 40;\n score += citationScore;\n \n // Recency score\n const paperYear = parseInt(paper.year);\n const currentYear = new Date().getFullYear();\n const recencyScore = Math.max(0, 20 - (currentYear - paperYear) * 2);\n score += recencyScore;\n \n // Title relevance\n const topicWords = searchTopic.toLowerCase().split(' ');\n const titleWords = paper.title.toLowerCase();\n const titleMatches = topicWords.filter(word => titleWords.includes(word)).length;\n score += titleMatches * 10;\n \n // Abstract relevance\n if (paper.abstract) {\n const abstractWords = paper.abstract.toLowerCase();\n const abstractMatches = topicWords.filter(word => abstractWords.includes(word)).length;\n score += abstractMatches * 5;\n }\n \n return {\n ...paper,\n relevanceScore: Math.round(score),\n rankingDetails: {\n citationScore: Math.round(citationScore),\n recencyScore,\n titleRelevance: titleMatches,\n abstractRelevance: abstractMatches || 0\n }\n };\n});\n\n// Sort by score and limit to top N\nconst maxPapers = $node['Set Search Parameters'].json.maxPapers;\nconst topPapers = scoredPapers\n .sort((a, b) => b.relevanceScore - a.relevanceScore)\n .slice(0, maxPapers);\n\nreturn topPapers.map(paper => ({ json: paper }));"
},
"typeVersion": 2
},
{
"id": "split-batch",
"name": "Traiter un par un",
"type": "n8n-nodes-base.splitInBatches",
"notes": "Process papers individually",
"position": [
850,
300
],
"parameters": {
"options": {},
"batchSize": 1
},
"typeVersion": 1
},
{
"id": "has-pdf",
"name": "Possède un PDF ?",
"type": "n8n-nodes-base.if",
"position": [
1050,
300
],
"parameters": {
"conditions": {
"string": [
{
"value1": "={{ $json.pdfURL }}",
"operation": "isNotEmpty"
}
]
}
},
"typeVersion": 1
},
{
"id": "pdfvector-parse",
"name": "PDF Vector - Analyser l'Article",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Parse paper content from PDF or image",
"position": [
1250,
250
],
"parameters": {
"url": "={{ $json.pdfURL }}",
"useLLM": "auto",
"resource": "document",
"inputType": "url",
"operation": "parse"
},
"typeVersion": 1
},
{
"id": "analyze-paper",
"name": "Analyser le Contenu de l'Article",
"type": "n8n-nodes-base.openAi",
"notes": "Generate review entry",
"position": [
1450,
300
],
"parameters": {
"model": "gpt-4",
"messages": {
"values": [
{
"content": "Create a literature review entry for this paper in the context of '{{ $node['Set Search Parameters'].json.topic }}':\n\nTitle: {{ $json.title }}\nAuthors: {{ $json.authors }}\nYear: {{ $json.year }}\nCitations: {{ $json.totalCitations }}\n\nContent: {{ $json.content || $json.abstract }}\n\nProvide:\n1. A 3-4 sentence summary of the paper's contribution\n2. Key methodology used\n3. Main findings (2-3 bullet points)\n4. How it relates to the topic\n5. Limitations mentioned\n6. Suggested citation in APA format"
}
]
}
},
"typeVersion": 1
},
{
"id": "store-entry",
"name": "Stocker l'Entrée de Revue",
"type": "n8n-nodes-base.set",
"notes": "Save processed entry",
"position": [
1650,
300
],
"parameters": {
"values": {
"string": [
{
"name": "reviewEntry",
"value": "={{ $json.choices[0].message.content }}"
},
{
"name": "paperTitle",
"value": "={{ $node['Has PDF?'].json.title }}"
},
{
"name": "paperDoi",
"value": "={{ $node['Has PDF?'].json.doi }}"
}
]
}
},
"typeVersion": 1
},
{
"id": "compile-review",
"name": "Compiler la Revue de Littérature",
"type": "n8n-nodes-base.code",
"notes": "Generate final document",
"position": [
1850,
300
],
"parameters": {
"functionCode": "// Wait for all papers to be processed\nconst allEntries = $input.all().map(item => item.json);\n\n// Group papers by themes/methodologies\nconst themes = {\n 'Machine Learning Models': [],\n 'Clinical Applications': [],\n 'Data Processing': [],\n 'Evaluation Studies': [],\n 'Review Papers': [],\n 'Other': []\n};\n\n// Categorize papers (simplified - in production use NLP)\nallEntries.forEach(entry => {\n const review = entry.reviewEntry.toLowerCase();\n if (review.includes('neural network') || review.includes('deep learning')) {\n themes['Machine Learning Models'].push(entry);\n } else if (review.includes('clinical') || review.includes('patient')) {\n themes['Clinical Applications'].push(entry);\n } else if (review.includes('preprocessing') || review.includes('data processing')) {\n themes['Data Processing'].push(entry);\n } else if (review.includes('evaluation') || review.includes('comparison')) {\n themes['Evaluation Studies'].push(entry);\n } else if (review.includes('review') || review.includes('survey')) {\n themes['Review Papers'].push(entry);\n } else {\n themes['Other'].push(entry);\n }\n});\n\n// Generate literature review document\nlet reviewDocument = `# Literature Review: ${$node['Set Search Parameters'].json.topic}\\n\\n`;\nreviewDocument += `Generated on: ${new Date().toLocaleDateString()}\\n\\n`;\nreviewDocument += `## Summary\\n\\n`;\nreviewDocument += `This review analyzes ${allEntries.length} papers published between ${$node['Set Search Parameters'].json.yearFrom} and ${$node['Set Search Parameters'].json.yearTo} on the topic of ${$node['Set Search Parameters'].json.topic}.\\n\\n`;\n\n// Add themed sections\nObject.entries(themes).forEach(([theme, papers]) => {\n if (papers.length > 0) {\n reviewDocument += `## ${theme} (${papers.length} papers)\\n\\n`;\n papers.forEach(paper => {\n reviewDocument += `### ${paper.paperTitle}\\n\\n`;\n reviewDocument += paper.reviewEntry + '\\n\\n';\n });\n }\n});\n\n// Add bibliography\nreviewDocument += `## Bibliography\\n\\n`;\nallEntries.forEach((entry, index) => {\n const citation = entry.reviewEntry.split('Suggested citation:')[1] || 'Citation not available';\n reviewDocument += `${index + 1}. ${citation.trim()}\\n\\n`;\n});\n\nreturn [{\n json: {\n reviewDocument,\n totalPapers: allEntries.length,\n themes: Object.entries(themes).map(([theme, papers]) => ({\n theme,\n count: papers.length\n })),\n generatedAt: new Date().toISOString()\n }\n}];"
},
"typeVersion": 2
}
],
"connections": {
"has-pdf": {
"main": [
[
{
"node": "pdfvector-parse",
"type": "main",
"index": 0
}
],
[
{
"node": "analyze-paper",
"type": "main",
"index": 0
}
]
]
},
"split-batch": {
"main": [
[
{
"node": "has-pdf",
"type": "main",
"index": 0
}
]
]
},
"store-entry": {
"main": [
[
{
"node": "split-batch",
"type": "main",
"index": 0
}
]
]
},
"rank-papers": {
"main": [
[
{
"node": "split-batch",
"type": "main",
"index": 0
}
]
]
},
"analyze-paper": {
"main": [
[
{
"node": "store-entry",
"type": "main",
"index": 0
}
]
]
},
"set-parameters": {
"main": [
[
{
"node": "pdfvector-search",
"type": "main",
"index": 0
}
]
]
},
"pdfvector-parse": {
"main": [
[
{
"node": "analyze-paper",
"type": "main",
"index": 0
}
]
]
},
"pdfvector-search": {
"main": [
[
{
"node": "rank-papers",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Intermédiaire - Extraction de documents, RAG IA, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
PDF Vector
@pdfvectorA fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.
Partager ce workflow