Extraction et résumé de données Wikipedia via Bright Data et Google Gemini
Ceci est unOther, AIworkflow d'automatisation du domainecontenant 12 nœuds.Utilise principalement des nœuds comme Set, HttpRequest, ManualTrigger, ChainLlm, ChainSummarization, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Extraire et résumer les données de Wikipedia avec Bright Data et Gemini AI
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API Google Gemini
Nœuds utilisés (12)
Catégorie
{
"id": "sczRNO4u1HYc5YV7",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Extract & Summarize Wikipedia Data with Bright Data and Gemini AI",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "0f4b4939-6356-4672-ae61-8d1daf66a168",
"name": "Lors du clic sur 'Tester le workflow'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
340,
-440
],
"parameters": {},
"typeVersion": 1
},
{
"id": "167e060a-c36c-462a-826c-81ef379c824b",
"name": "Google Gemini Modèle de Chat pour la Synthèse",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1520,
-60
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a51f2634-8b59-4feb-be39-674e8f198714",
"name": "Google Gemini Modèle de Chat2",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1000,
-240
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-pro-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a1ec001f-6e97-4efb-91d9-9a037fbf472c",
"name": "Résumé Webhook Notificateur",
"type": "n8n-nodes-base.httpRequest",
"position": [
1860,
-280
],
"parameters": {
"url": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "summary",
"value": "={{ $json.response.text }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "f4dd93b5-2a33-4ac7-a0c9-9e0956bea363",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
340,
-820
],
"parameters": {
"width": 400,
"height": 300,
"content": "## Note\n\nThis template deals with the Wikipedia data extraction and summarization of content with the Bright Data. \n\nThe LLM Data Extractor is responsible for producing a human readable content.\n\nThe Concise Summary Generator node is responsible for generating the concise summary of the Wikipedia extracted info.\n\n**Please make sure to update the Wikipedia URL with Bright Data Zone. Also make sure to set the Webhook Notification URL.**"
},
"typeVersion": 1
},
{
"id": "9bd6f913-c526-4e54-81f8-8885a0fe974f",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
780,
-820
],
"parameters": {
"width": 500,
"height": 300,
"content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used to demonstrate the data extraction and summarization aspects.\n\nBasic LLM Chain is being used for extracting the html to text\n\nSummarization Chain is being used for summarization of the Wikipedia data.\n\n**Note - Replace Google Gemini with the Open AI or suitable LLM providers of your choice.**"
},
"typeVersion": 1
},
{
"id": "30008ce4-4de2-43c5-bb03-94db58262f86",
"name": "Requête Web Wikipedia",
"type": "n8n-nodes-base.httpRequest",
"position": [
780,
-440
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "={{ $json.zone }}"
},
{
"name": "url",
"value": "={{ $json.url }}"
},
{
"name": "format",
"value": "raw"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"name": "Extracteur de Données LLM",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1000,
-440
],
"parameters": {
"text": "={{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are an expert Data Formatter. Make sure to format the data in a human readable manner. Please output the human readable content without your own thoughts"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.6
},
{
"id": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"name": "Générateur de Résumé Concis",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1440,
-280
],
"parameters": {
"options": {
"summarizationMethodAndPrompts": {
"values": {
"prompt": "Write a concise summary of the following:\n\n\n\"{text}\"\n"
}
}
},
"chunkingMode": "advanced"
},
"typeVersion": 2
},
{
"id": "0cc843c1-252a-4c18-9856-5c7dfc732072",
"name": "Définir l'URL Wikipedia avec Bright Data Zone",
"type": "n8n-nodes-base.set",
"notes": "Set the URL which you are interested to scrap the data",
"position": [
560,
-440
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1c132dd6-31e4-453b-a8cf-cad9845fe55b",
"name": "url",
"type": "string",
"value": "https://en.wikipedia.org/wiki/Cloud_computing?product=unlocker&method=api"
},
{
"id": "0fa387df-2511-4228-b6aa-237cceb3e9c7",
"name": "zone",
"type": "string",
"value": "web_unlocker1"
}
]
}
},
"notesInFlow": true,
"typeVersion": 3.4
},
{
"id": "6cb9930f-1924-4762-8150-f5cd0e063348",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
940,
-500
],
"parameters": {
"color": 4,
"width": 380,
"height": 420,
"content": "## Basic LLM Chain Data Extractor\n"
},
"typeVersion": 1
},
{
"id": "47811535-bce5-4946-aaa6-baef87db1100",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1400,
-340
],
"parameters": {
"color": 5,
"width": 340,
"height": 420,
"content": "## Summarization Chain\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "5b5e78fb-6e5a-4b92-838c-6c4060618e9c",
"connections": {
"28656a7d-4bd8-41c8-8471-50d19d88e7f2": {
"main": [
[
{
"node": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"type": "main",
"index": 0
}
]
]
},
"30008ce4-4de2-43c5-bb03-94db58262f86": {
"main": [
[
{
"node": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"type": "main",
"index": 0
}
]
]
},
"7045af3b-9e74-42ef-92f0-f8d3266f2890": {
"main": [
[
{
"node": "a1ec001f-6e97-4efb-91d9-9a037fbf472c",
"type": "main",
"index": 0
}
]
]
},
"a51f2634-8b59-4feb-be39-674e8f198714": {
"ai_languageModel": [
[
{
"node": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"0f4b4939-6356-4672-ae61-8d1daf66a168": {
"main": [
[
{
"node": "0cc843c1-252a-4c18-9856-5c7dfc732072",
"type": "main",
"index": 0
}
]
]
},
"0cc843c1-252a-4c18-9856-5c7dfc732072": {
"main": [
[
{
"node": "30008ce4-4de2-43c5-bb03-94db58262f86",
"type": "main",
"index": 0
}
]
]
},
"167e060a-c36c-462a-826c-81ef379c824b": {
"ai_languageModel": [
[
{
"node": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Intermédiaire - Autres, Intelligence Artificielle
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Ranjan Dailata
@ranjancsePartager ce workflow